1000 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			1000 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /**
 | |
|  * Supported cipher modes.
 | |
|  *
 | |
|  * @author Dave Longley
 | |
|  *
 | |
|  * Copyright (c) 2010-2014 Digital Bazaar, Inc.
 | |
|  */
 | |
| var forge = require('./forge');
 | |
| require('./util');
 | |
| 
 | |
| forge.cipher = forge.cipher || {};
 | |
| 
 | |
| // supported cipher modes
 | |
| var modes = module.exports = forge.cipher.modes = forge.cipher.modes || {};
 | |
| 
 | |
| /** Electronic codebook (ECB) (Don't use this; it's not secure) **/
 | |
| 
 | |
| modes.ecb = function(options) {
 | |
|   options = options || {};
 | |
|   this.name = 'ECB';
 | |
|   this.cipher = options.cipher;
 | |
|   this.blockSize = options.blockSize || 16;
 | |
|   this._ints = this.blockSize / 4;
 | |
|   this._inBlock = new Array(this._ints);
 | |
|   this._outBlock = new Array(this._ints);
 | |
| };
 | |
| 
 | |
| modes.ecb.prototype.start = function(options) {};
 | |
| 
 | |
| modes.ecb.prototype.encrypt = function(input, output, finish) {
 | |
|   // not enough input to encrypt
 | |
|   if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // get next block
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     this._inBlock[i] = input.getInt32();
 | |
|   }
 | |
| 
 | |
|   // encrypt block
 | |
|   this.cipher.encrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // write output
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     output.putInt32(this._outBlock[i]);
 | |
|   }
 | |
| };
 | |
| 
 | |
| modes.ecb.prototype.decrypt = function(input, output, finish) {
 | |
|   // not enough input to decrypt
 | |
|   if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // get next block
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     this._inBlock[i] = input.getInt32();
 | |
|   }
 | |
| 
 | |
|   // decrypt block
 | |
|   this.cipher.decrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // write output
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     output.putInt32(this._outBlock[i]);
 | |
|   }
 | |
| };
 | |
| 
 | |
| modes.ecb.prototype.pad = function(input, options) {
 | |
|   // add PKCS#7 padding to block (each pad byte is the
 | |
|   // value of the number of pad bytes)
 | |
|   var padding = (input.length() === this.blockSize ?
 | |
|     this.blockSize : (this.blockSize - input.length()));
 | |
|   input.fillWithByte(padding, padding);
 | |
|   return true;
 | |
| };
 | |
| 
 | |
| modes.ecb.prototype.unpad = function(output, options) {
 | |
|   // check for error: input data not a multiple of blockSize
 | |
|   if(options.overflow > 0) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // ensure padding byte count is valid
 | |
|   var len = output.length();
 | |
|   var count = output.at(len - 1);
 | |
|   if(count > (this.blockSize << 2)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // trim off padding bytes
 | |
|   output.truncate(count);
 | |
|   return true;
 | |
| };
 | |
| 
 | |
| /** Cipher-block Chaining (CBC) **/
 | |
| 
 | |
| modes.cbc = function(options) {
 | |
|   options = options || {};
 | |
|   this.name = 'CBC';
 | |
|   this.cipher = options.cipher;
 | |
|   this.blockSize = options.blockSize || 16;
 | |
|   this._ints = this.blockSize / 4;
 | |
|   this._inBlock = new Array(this._ints);
 | |
|   this._outBlock = new Array(this._ints);
 | |
| };
 | |
| 
 | |
| modes.cbc.prototype.start = function(options) {
 | |
|   // Note: legacy support for using IV residue (has security flaws)
 | |
|   // if IV is null, reuse block from previous processing
 | |
|   if(options.iv === null) {
 | |
|     // must have a previous block
 | |
|     if(!this._prev) {
 | |
|       throw new Error('Invalid IV parameter.');
 | |
|     }
 | |
|     this._iv = this._prev.slice(0);
 | |
|   } else if(!('iv' in options)) {
 | |
|     throw new Error('Invalid IV parameter.');
 | |
|   } else {
 | |
|     // save IV as "previous" block
 | |
|     this._iv = transformIV(options.iv, this.blockSize);
 | |
|     this._prev = this._iv.slice(0);
 | |
|   }
 | |
| };
 | |
| 
 | |
| modes.cbc.prototype.encrypt = function(input, output, finish) {
 | |
|   // not enough input to encrypt
 | |
|   if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // get next block
 | |
|   // CBC XOR's IV (or previous block) with plaintext
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     this._inBlock[i] = this._prev[i] ^ input.getInt32();
 | |
|   }
 | |
| 
 | |
|   // encrypt block
 | |
|   this.cipher.encrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // write output, save previous block
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     output.putInt32(this._outBlock[i]);
 | |
|   }
 | |
|   this._prev = this._outBlock;
 | |
| };
 | |
| 
 | |
| modes.cbc.prototype.decrypt = function(input, output, finish) {
 | |
|   // not enough input to decrypt
 | |
|   if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // get next block
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     this._inBlock[i] = input.getInt32();
 | |
|   }
 | |
| 
 | |
|   // decrypt block
 | |
|   this.cipher.decrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // write output, save previous ciphered block
 | |
|   // CBC XOR's IV (or previous block) with ciphertext
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     output.putInt32(this._prev[i] ^ this._outBlock[i]);
 | |
|   }
 | |
|   this._prev = this._inBlock.slice(0);
 | |
| };
 | |
| 
 | |
| modes.cbc.prototype.pad = function(input, options) {
 | |
|   // add PKCS#7 padding to block (each pad byte is the
 | |
|   // value of the number of pad bytes)
 | |
|   var padding = (input.length() === this.blockSize ?
 | |
|     this.blockSize : (this.blockSize - input.length()));
 | |
|   input.fillWithByte(padding, padding);
 | |
|   return true;
 | |
| };
 | |
| 
 | |
| modes.cbc.prototype.unpad = function(output, options) {
 | |
|   // check for error: input data not a multiple of blockSize
 | |
|   if(options.overflow > 0) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // ensure padding byte count is valid
 | |
|   var len = output.length();
 | |
|   var count = output.at(len - 1);
 | |
|   if(count > (this.blockSize << 2)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // trim off padding bytes
 | |
|   output.truncate(count);
 | |
|   return true;
 | |
| };
 | |
| 
 | |
| /** Cipher feedback (CFB) **/
 | |
| 
 | |
| modes.cfb = function(options) {
 | |
|   options = options || {};
 | |
|   this.name = 'CFB';
 | |
|   this.cipher = options.cipher;
 | |
|   this.blockSize = options.blockSize || 16;
 | |
|   this._ints = this.blockSize / 4;
 | |
|   this._inBlock = null;
 | |
|   this._outBlock = new Array(this._ints);
 | |
|   this._partialBlock = new Array(this._ints);
 | |
|   this._partialOutput = forge.util.createBuffer();
 | |
|   this._partialBytes = 0;
 | |
| };
 | |
| 
 | |
| modes.cfb.prototype.start = function(options) {
 | |
|   if(!('iv' in options)) {
 | |
|     throw new Error('Invalid IV parameter.');
 | |
|   }
 | |
|   // use IV as first input
 | |
|   this._iv = transformIV(options.iv, this.blockSize);
 | |
|   this._inBlock = this._iv.slice(0);
 | |
|   this._partialBytes = 0;
 | |
| };
 | |
| 
 | |
| modes.cfb.prototype.encrypt = function(input, output, finish) {
 | |
|   // not enough input to encrypt
 | |
|   var inputLength = input.length();
 | |
|   if(inputLength === 0) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // encrypt block
 | |
|   this.cipher.encrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // handle full block
 | |
|   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | |
|     // XOR input with output, write input as output
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       this._inBlock[i] = input.getInt32() ^ this._outBlock[i];
 | |
|       output.putInt32(this._inBlock[i]);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // handle partial block
 | |
|   var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | |
|   if(partialBytes > 0) {
 | |
|     partialBytes = this.blockSize - partialBytes;
 | |
|   }
 | |
| 
 | |
|   // XOR input with output, write input as partial output
 | |
|   this._partialOutput.clear();
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     this._partialBlock[i] = input.getInt32() ^ this._outBlock[i];
 | |
|     this._partialOutput.putInt32(this._partialBlock[i]);
 | |
|   }
 | |
| 
 | |
|   if(partialBytes > 0) {
 | |
|     // block still incomplete, restore input buffer
 | |
|     input.read -= this.blockSize;
 | |
|   } else {
 | |
|     // block complete, update input block
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       this._inBlock[i] = this._partialBlock[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // skip any previous partial bytes
 | |
|   if(this._partialBytes > 0) {
 | |
|     this._partialOutput.getBytes(this._partialBytes);
 | |
|   }
 | |
| 
 | |
|   if(partialBytes > 0 && !finish) {
 | |
|     output.putBytes(this._partialOutput.getBytes(
 | |
|       partialBytes - this._partialBytes));
 | |
|     this._partialBytes = partialBytes;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   output.putBytes(this._partialOutput.getBytes(
 | |
|     inputLength - this._partialBytes));
 | |
|   this._partialBytes = 0;
 | |
| };
 | |
| 
 | |
| modes.cfb.prototype.decrypt = function(input, output, finish) {
 | |
|   // not enough input to decrypt
 | |
|   var inputLength = input.length();
 | |
|   if(inputLength === 0) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // encrypt block (CFB always uses encryption mode)
 | |
|   this.cipher.encrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // handle full block
 | |
|   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | |
|     // XOR input with output, write input as output
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       this._inBlock[i] = input.getInt32();
 | |
|       output.putInt32(this._inBlock[i] ^ this._outBlock[i]);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // handle partial block
 | |
|   var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | |
|   if(partialBytes > 0) {
 | |
|     partialBytes = this.blockSize - partialBytes;
 | |
|   }
 | |
| 
 | |
|   // XOR input with output, write input as partial output
 | |
|   this._partialOutput.clear();
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     this._partialBlock[i] = input.getInt32();
 | |
|     this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]);
 | |
|   }
 | |
| 
 | |
|   if(partialBytes > 0) {
 | |
|     // block still incomplete, restore input buffer
 | |
|     input.read -= this.blockSize;
 | |
|   } else {
 | |
|     // block complete, update input block
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       this._inBlock[i] = this._partialBlock[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // skip any previous partial bytes
 | |
|   if(this._partialBytes > 0) {
 | |
|     this._partialOutput.getBytes(this._partialBytes);
 | |
|   }
 | |
| 
 | |
|   if(partialBytes > 0 && !finish) {
 | |
|     output.putBytes(this._partialOutput.getBytes(
 | |
|       partialBytes - this._partialBytes));
 | |
|     this._partialBytes = partialBytes;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   output.putBytes(this._partialOutput.getBytes(
 | |
|     inputLength - this._partialBytes));
 | |
|   this._partialBytes = 0;
 | |
| };
 | |
| 
 | |
| /** Output feedback (OFB) **/
 | |
| 
 | |
| modes.ofb = function(options) {
 | |
|   options = options || {};
 | |
|   this.name = 'OFB';
 | |
|   this.cipher = options.cipher;
 | |
|   this.blockSize = options.blockSize || 16;
 | |
|   this._ints = this.blockSize / 4;
 | |
|   this._inBlock = null;
 | |
|   this._outBlock = new Array(this._ints);
 | |
|   this._partialOutput = forge.util.createBuffer();
 | |
|   this._partialBytes = 0;
 | |
| };
 | |
| 
 | |
| modes.ofb.prototype.start = function(options) {
 | |
|   if(!('iv' in options)) {
 | |
|     throw new Error('Invalid IV parameter.');
 | |
|   }
 | |
|   // use IV as first input
 | |
|   this._iv = transformIV(options.iv, this.blockSize);
 | |
|   this._inBlock = this._iv.slice(0);
 | |
|   this._partialBytes = 0;
 | |
| };
 | |
| 
 | |
| modes.ofb.prototype.encrypt = function(input, output, finish) {
 | |
|   // not enough input to encrypt
 | |
|   var inputLength = input.length();
 | |
|   if(input.length() === 0) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // encrypt block (OFB always uses encryption mode)
 | |
|   this.cipher.encrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // handle full block
 | |
|   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | |
|     // XOR input with output and update next input
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       output.putInt32(input.getInt32() ^ this._outBlock[i]);
 | |
|       this._inBlock[i] = this._outBlock[i];
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // handle partial block
 | |
|   var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | |
|   if(partialBytes > 0) {
 | |
|     partialBytes = this.blockSize - partialBytes;
 | |
|   }
 | |
| 
 | |
|   // XOR input with output
 | |
|   this._partialOutput.clear();
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
 | |
|   }
 | |
| 
 | |
|   if(partialBytes > 0) {
 | |
|     // block still incomplete, restore input buffer
 | |
|     input.read -= this.blockSize;
 | |
|   } else {
 | |
|     // block complete, update input block
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       this._inBlock[i] = this._outBlock[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // skip any previous partial bytes
 | |
|   if(this._partialBytes > 0) {
 | |
|     this._partialOutput.getBytes(this._partialBytes);
 | |
|   }
 | |
| 
 | |
|   if(partialBytes > 0 && !finish) {
 | |
|     output.putBytes(this._partialOutput.getBytes(
 | |
|       partialBytes - this._partialBytes));
 | |
|     this._partialBytes = partialBytes;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   output.putBytes(this._partialOutput.getBytes(
 | |
|     inputLength - this._partialBytes));
 | |
|   this._partialBytes = 0;
 | |
| };
 | |
| 
 | |
| modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt;
 | |
| 
 | |
| /** Counter (CTR) **/
 | |
| 
 | |
| modes.ctr = function(options) {
 | |
|   options = options || {};
 | |
|   this.name = 'CTR';
 | |
|   this.cipher = options.cipher;
 | |
|   this.blockSize = options.blockSize || 16;
 | |
|   this._ints = this.blockSize / 4;
 | |
|   this._inBlock = null;
 | |
|   this._outBlock = new Array(this._ints);
 | |
|   this._partialOutput = forge.util.createBuffer();
 | |
|   this._partialBytes = 0;
 | |
| };
 | |
| 
 | |
| modes.ctr.prototype.start = function(options) {
 | |
|   if(!('iv' in options)) {
 | |
|     throw new Error('Invalid IV parameter.');
 | |
|   }
 | |
|   // use IV as first input
 | |
|   this._iv = transformIV(options.iv, this.blockSize);
 | |
|   this._inBlock = this._iv.slice(0);
 | |
|   this._partialBytes = 0;
 | |
| };
 | |
| 
 | |
| modes.ctr.prototype.encrypt = function(input, output, finish) {
 | |
|   // not enough input to encrypt
 | |
|   var inputLength = input.length();
 | |
|   if(inputLength === 0) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // encrypt block (CTR always uses encryption mode)
 | |
|   this.cipher.encrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // handle full block
 | |
|   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | |
|     // XOR input with output
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       output.putInt32(input.getInt32() ^ this._outBlock[i]);
 | |
|     }
 | |
|   } else {
 | |
|     // handle partial block
 | |
|     var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | |
|     if(partialBytes > 0) {
 | |
|       partialBytes = this.blockSize - partialBytes;
 | |
|     }
 | |
| 
 | |
|     // XOR input with output
 | |
|     this._partialOutput.clear();
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
 | |
|     }
 | |
| 
 | |
|     if(partialBytes > 0) {
 | |
|       // block still incomplete, restore input buffer
 | |
|       input.read -= this.blockSize;
 | |
|     }
 | |
| 
 | |
|     // skip any previous partial bytes
 | |
|     if(this._partialBytes > 0) {
 | |
|       this._partialOutput.getBytes(this._partialBytes);
 | |
|     }
 | |
| 
 | |
|     if(partialBytes > 0 && !finish) {
 | |
|       output.putBytes(this._partialOutput.getBytes(
 | |
|         partialBytes - this._partialBytes));
 | |
|       this._partialBytes = partialBytes;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     output.putBytes(this._partialOutput.getBytes(
 | |
|       inputLength - this._partialBytes));
 | |
|     this._partialBytes = 0;
 | |
|   }
 | |
| 
 | |
|   // block complete, increment counter (input block)
 | |
|   inc32(this._inBlock);
 | |
| };
 | |
| 
 | |
| modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt;
 | |
| 
 | |
| /** Galois/Counter Mode (GCM) **/
 | |
| 
 | |
| modes.gcm = function(options) {
 | |
|   options = options || {};
 | |
|   this.name = 'GCM';
 | |
|   this.cipher = options.cipher;
 | |
|   this.blockSize = options.blockSize || 16;
 | |
|   this._ints = this.blockSize / 4;
 | |
|   this._inBlock = new Array(this._ints);
 | |
|   this._outBlock = new Array(this._ints);
 | |
|   this._partialOutput = forge.util.createBuffer();
 | |
|   this._partialBytes = 0;
 | |
| 
 | |
|   // R is actually this value concatenated with 120 more zero bits, but
 | |
|   // we only XOR against R so the other zeros have no effect -- we just
 | |
|   // apply this value to the first integer in a block
 | |
|   this._R = 0xE1000000;
 | |
| };
 | |
| 
 | |
| modes.gcm.prototype.start = function(options) {
 | |
|   if(!('iv' in options)) {
 | |
|     throw new Error('Invalid IV parameter.');
 | |
|   }
 | |
|   // ensure IV is a byte buffer
 | |
|   var iv = forge.util.createBuffer(options.iv);
 | |
| 
 | |
|   // no ciphered data processed yet
 | |
|   this._cipherLength = 0;
 | |
| 
 | |
|   // default additional data is none
 | |
|   var additionalData;
 | |
|   if('additionalData' in options) {
 | |
|     additionalData = forge.util.createBuffer(options.additionalData);
 | |
|   } else {
 | |
|     additionalData = forge.util.createBuffer();
 | |
|   }
 | |
| 
 | |
|   // default tag length is 128 bits
 | |
|   if('tagLength' in options) {
 | |
|     this._tagLength = options.tagLength;
 | |
|   } else {
 | |
|     this._tagLength = 128;
 | |
|   }
 | |
| 
 | |
|   // if tag is given, ensure tag matches tag length
 | |
|   this._tag = null;
 | |
|   if(options.decrypt) {
 | |
|     // save tag to check later
 | |
|     this._tag = forge.util.createBuffer(options.tag).getBytes();
 | |
|     if(this._tag.length !== (this._tagLength / 8)) {
 | |
|       throw new Error('Authentication tag does not match tag length.');
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // create tmp storage for hash calculation
 | |
|   this._hashBlock = new Array(this._ints);
 | |
| 
 | |
|   // no tag generated yet
 | |
|   this.tag = null;
 | |
| 
 | |
|   // generate hash subkey
 | |
|   // (apply block cipher to "zero" block)
 | |
|   this._hashSubkey = new Array(this._ints);
 | |
|   this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey);
 | |
| 
 | |
|   // generate table M
 | |
|   // use 4-bit tables (32 component decomposition of a 16 byte value)
 | |
|   // 8-bit tables take more space and are known to have security
 | |
|   // vulnerabilities (in native implementations)
 | |
|   this.componentBits = 4;
 | |
|   this._m = this.generateHashTable(this._hashSubkey, this.componentBits);
 | |
| 
 | |
|   // Note: support IV length different from 96 bits? (only supporting
 | |
|   // 96 bits is recommended by NIST SP-800-38D)
 | |
|   // generate J_0
 | |
|   var ivLength = iv.length();
 | |
|   if(ivLength === 12) {
 | |
|     // 96-bit IV
 | |
|     this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1];
 | |
|   } else {
 | |
|     // IV is NOT 96-bits
 | |
|     this._j0 = [0, 0, 0, 0];
 | |
|     while(iv.length() > 0) {
 | |
|       this._j0 = this.ghash(
 | |
|         this._hashSubkey, this._j0,
 | |
|         [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]);
 | |
|     }
 | |
|     this._j0 = this.ghash(
 | |
|       this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8)));
 | |
|   }
 | |
| 
 | |
|   // generate ICB (initial counter block)
 | |
|   this._inBlock = this._j0.slice(0);
 | |
|   inc32(this._inBlock);
 | |
|   this._partialBytes = 0;
 | |
| 
 | |
|   // consume authentication data
 | |
|   additionalData = forge.util.createBuffer(additionalData);
 | |
|   // save additional data length as a BE 64-bit number
 | |
|   this._aDataLength = from64To32(additionalData.length() * 8);
 | |
|   // pad additional data to 128 bit (16 byte) block size
 | |
|   var overflow = additionalData.length() % this.blockSize;
 | |
|   if(overflow) {
 | |
|     additionalData.fillWithByte(0, this.blockSize - overflow);
 | |
|   }
 | |
|   this._s = [0, 0, 0, 0];
 | |
|   while(additionalData.length() > 0) {
 | |
|     this._s = this.ghash(this._hashSubkey, this._s, [
 | |
|       additionalData.getInt32(),
 | |
|       additionalData.getInt32(),
 | |
|       additionalData.getInt32(),
 | |
|       additionalData.getInt32()
 | |
|     ]);
 | |
|   }
 | |
| };
 | |
| 
 | |
| modes.gcm.prototype.encrypt = function(input, output, finish) {
 | |
|   // not enough input to encrypt
 | |
|   var inputLength = input.length();
 | |
|   if(inputLength === 0) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // encrypt block
 | |
|   this.cipher.encrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // handle full block
 | |
|   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | |
|     // XOR input with output
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       output.putInt32(this._outBlock[i] ^= input.getInt32());
 | |
|     }
 | |
|     this._cipherLength += this.blockSize;
 | |
|   } else {
 | |
|     // handle partial block
 | |
|     var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | |
|     if(partialBytes > 0) {
 | |
|       partialBytes = this.blockSize - partialBytes;
 | |
|     }
 | |
| 
 | |
|     // XOR input with output
 | |
|     this._partialOutput.clear();
 | |
|     for(var i = 0; i < this._ints; ++i) {
 | |
|       this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
 | |
|     }
 | |
| 
 | |
|     if(partialBytes <= 0 || finish) {
 | |
|       // handle overflow prior to hashing
 | |
|       if(finish) {
 | |
|         // get block overflow
 | |
|         var overflow = inputLength % this.blockSize;
 | |
|         this._cipherLength += overflow;
 | |
|         // truncate for hash function
 | |
|         this._partialOutput.truncate(this.blockSize - overflow);
 | |
|       } else {
 | |
|         this._cipherLength += this.blockSize;
 | |
|       }
 | |
| 
 | |
|       // get output block for hashing
 | |
|       for(var i = 0; i < this._ints; ++i) {
 | |
|         this._outBlock[i] = this._partialOutput.getInt32();
 | |
|       }
 | |
|       this._partialOutput.read -= this.blockSize;
 | |
|     }
 | |
| 
 | |
|     // skip any previous partial bytes
 | |
|     if(this._partialBytes > 0) {
 | |
|       this._partialOutput.getBytes(this._partialBytes);
 | |
|     }
 | |
| 
 | |
|     if(partialBytes > 0 && !finish) {
 | |
|       // block still incomplete, restore input buffer, get partial output,
 | |
|       // and return early
 | |
|       input.read -= this.blockSize;
 | |
|       output.putBytes(this._partialOutput.getBytes(
 | |
|         partialBytes - this._partialBytes));
 | |
|       this._partialBytes = partialBytes;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     output.putBytes(this._partialOutput.getBytes(
 | |
|       inputLength - this._partialBytes));
 | |
|     this._partialBytes = 0;
 | |
|   }
 | |
| 
 | |
|   // update hash block S
 | |
|   this._s = this.ghash(this._hashSubkey, this._s, this._outBlock);
 | |
| 
 | |
|   // increment counter (input block)
 | |
|   inc32(this._inBlock);
 | |
| };
 | |
| 
 | |
| modes.gcm.prototype.decrypt = function(input, output, finish) {
 | |
|   // not enough input to decrypt
 | |
|   var inputLength = input.length();
 | |
|   if(inputLength < this.blockSize && !(finish && inputLength > 0)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // encrypt block (GCM always uses encryption mode)
 | |
|   this.cipher.encrypt(this._inBlock, this._outBlock);
 | |
| 
 | |
|   // increment counter (input block)
 | |
|   inc32(this._inBlock);
 | |
| 
 | |
|   // update hash block S
 | |
|   this._hashBlock[0] = input.getInt32();
 | |
|   this._hashBlock[1] = input.getInt32();
 | |
|   this._hashBlock[2] = input.getInt32();
 | |
|   this._hashBlock[3] = input.getInt32();
 | |
|   this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock);
 | |
| 
 | |
|   // XOR hash input with output
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     output.putInt32(this._outBlock[i] ^ this._hashBlock[i]);
 | |
|   }
 | |
| 
 | |
|   // increment cipher data length
 | |
|   if(inputLength < this.blockSize) {
 | |
|     this._cipherLength += inputLength % this.blockSize;
 | |
|   } else {
 | |
|     this._cipherLength += this.blockSize;
 | |
|   }
 | |
| };
 | |
| 
 | |
| modes.gcm.prototype.afterFinish = function(output, options) {
 | |
|   var rval = true;
 | |
| 
 | |
|   // handle overflow
 | |
|   if(options.decrypt && options.overflow) {
 | |
|     output.truncate(this.blockSize - options.overflow);
 | |
|   }
 | |
| 
 | |
|   // handle authentication tag
 | |
|   this.tag = forge.util.createBuffer();
 | |
| 
 | |
|   // concatenate additional data length with cipher length
 | |
|   var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8));
 | |
| 
 | |
|   // include lengths in hash
 | |
|   this._s = this.ghash(this._hashSubkey, this._s, lengths);
 | |
| 
 | |
|   // do GCTR(J_0, S)
 | |
|   var tag = [];
 | |
|   this.cipher.encrypt(this._j0, tag);
 | |
|   for(var i = 0; i < this._ints; ++i) {
 | |
|     this.tag.putInt32(this._s[i] ^ tag[i]);
 | |
|   }
 | |
| 
 | |
|   // trim tag to length
 | |
|   this.tag.truncate(this.tag.length() % (this._tagLength / 8));
 | |
| 
 | |
|   // check authentication tag
 | |
|   if(options.decrypt && this.tag.bytes() !== this._tag) {
 | |
|     rval = false;
 | |
|   }
 | |
| 
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois
 | |
|  * field multiplication. The field, GF(2^128), is defined by the polynomial:
 | |
|  *
 | |
|  * x^128 + x^7 + x^2 + x + 1
 | |
|  *
 | |
|  * Which is represented in little-endian binary form as: 11100001 (0xe1). When
 | |
|  * the value of a coefficient is 1, a bit is set. The value R, is the
 | |
|  * concatenation of this value and 120 zero bits, yielding a 128-bit value
 | |
|  * which matches the block size.
 | |
|  *
 | |
|  * This function will multiply two elements (vectors of bytes), X and Y, in
 | |
|  * the field GF(2^128). The result is initialized to zero. For each bit of
 | |
|  * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd)
 | |
|  * by the current value of Y. For each bit, the value of Y will be raised by
 | |
|  * a power of x (multiplied by the polynomial x). This can be achieved by
 | |
|  * shifting Y once to the right. If the current value of Y, prior to being
 | |
|  * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial.
 | |
|  * Otherwise, we must divide by R after shifting to find the remainder.
 | |
|  *
 | |
|  * @param x the first block to multiply by the second.
 | |
|  * @param y the second block to multiply by the first.
 | |
|  *
 | |
|  * @return the block result of the multiplication.
 | |
|  */
 | |
| modes.gcm.prototype.multiply = function(x, y) {
 | |
|   var z_i = [0, 0, 0, 0];
 | |
|   var v_i = y.slice(0);
 | |
| 
 | |
|   // calculate Z_128 (block has 128 bits)
 | |
|   for(var i = 0; i < 128; ++i) {
 | |
|     // if x_i is 0, Z_{i+1} = Z_i (unchanged)
 | |
|     // else Z_{i+1} = Z_i ^ V_i
 | |
|     // get x_i by finding 32-bit int position, then left shift 1 by remainder
 | |
|     var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32));
 | |
|     if(x_i) {
 | |
|       z_i[0] ^= v_i[0];
 | |
|       z_i[1] ^= v_i[1];
 | |
|       z_i[2] ^= v_i[2];
 | |
|       z_i[3] ^= v_i[3];
 | |
|     }
 | |
| 
 | |
|     // if LSB(V_i) is 1, V_i = V_i >> 1
 | |
|     // else V_i = (V_i >> 1) ^ R
 | |
|     this.pow(v_i, v_i);
 | |
|   }
 | |
| 
 | |
|   return z_i;
 | |
| };
 | |
| 
 | |
| modes.gcm.prototype.pow = function(x, out) {
 | |
|   // if LSB(x) is 1, x = x >>> 1
 | |
|   // else x = (x >>> 1) ^ R
 | |
|   var lsb = x[3] & 1;
 | |
| 
 | |
|   // always do x >>> 1:
 | |
|   // starting with the rightmost integer, shift each integer to the right
 | |
|   // one bit, pulling in the bit from the integer to the left as its top
 | |
|   // most bit (do this for the last 3 integers)
 | |
|   for(var i = 3; i > 0; --i) {
 | |
|     out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31);
 | |
|   }
 | |
|   // shift the first integer normally
 | |
|   out[0] = x[0] >>> 1;
 | |
| 
 | |
|   // if lsb was not set, then polynomial had a degree of 127 and doesn't
 | |
|   // need to divided; otherwise, XOR with R to find the remainder; we only
 | |
|   // need to XOR the first integer since R technically ends w/120 zero bits
 | |
|   if(lsb) {
 | |
|     out[0] ^= this._R;
 | |
|   }
 | |
| };
 | |
| 
 | |
| modes.gcm.prototype.tableMultiply = function(x) {
 | |
|   // assumes 4-bit tables are used
 | |
|   var z = [0, 0, 0, 0];
 | |
|   for(var i = 0; i < 32; ++i) {
 | |
|     var idx = (i / 8) | 0;
 | |
|     var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF;
 | |
|     var ah = this._m[i][x_i];
 | |
|     z[0] ^= ah[0];
 | |
|     z[1] ^= ah[1];
 | |
|     z[2] ^= ah[2];
 | |
|     z[3] ^= ah[3];
 | |
|   }
 | |
|   return z;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * A continuing version of the GHASH algorithm that operates on a single
 | |
|  * block. The hash block, last hash value (Ym) and the new block to hash
 | |
|  * are given.
 | |
|  *
 | |
|  * @param h the hash block.
 | |
|  * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash.
 | |
|  * @param x the block to hash.
 | |
|  *
 | |
|  * @return the hashed value (Ym).
 | |
|  */
 | |
| modes.gcm.prototype.ghash = function(h, y, x) {
 | |
|   y[0] ^= x[0];
 | |
|   y[1] ^= x[1];
 | |
|   y[2] ^= x[2];
 | |
|   y[3] ^= x[3];
 | |
|   return this.tableMultiply(y);
 | |
|   //return this.multiply(y, h);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Precomputes a table for multiplying against the hash subkey. This
 | |
|  * mechanism provides a substantial speed increase over multiplication
 | |
|  * performed without a table. The table-based multiplication this table is
 | |
|  * for solves X * H by multiplying each component of X by H and then
 | |
|  * composing the results together using XOR.
 | |
|  *
 | |
|  * This function can be used to generate tables with different bit sizes
 | |
|  * for the components, however, this implementation assumes there are
 | |
|  * 32 components of X (which is a 16 byte vector), therefore each component
 | |
|  * takes 4-bits (so the table is constructed with bits=4).
 | |
|  *
 | |
|  * @param h the hash subkey.
 | |
|  * @param bits the bit size for a component.
 | |
|  */
 | |
| modes.gcm.prototype.generateHashTable = function(h, bits) {
 | |
|   // TODO: There are further optimizations that would use only the
 | |
|   // first table M_0 (or some variant) along with a remainder table;
 | |
|   // this can be explored in the future
 | |
|   var multiplier = 8 / bits;
 | |
|   var perInt = 4 * multiplier;
 | |
|   var size = 16 * multiplier;
 | |
|   var m = new Array(size);
 | |
|   for(var i = 0; i < size; ++i) {
 | |
|     var tmp = [0, 0, 0, 0];
 | |
|     var idx = (i / perInt) | 0;
 | |
|     var shft = ((perInt - 1 - (i % perInt)) * bits);
 | |
|     tmp[idx] = (1 << (bits - 1)) << shft;
 | |
|     m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits);
 | |
|   }
 | |
|   return m;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Generates a table for multiplying against the hash subkey for one
 | |
|  * particular component (out of all possible component values).
 | |
|  *
 | |
|  * @param mid the pre-multiplied value for the middle key of the table.
 | |
|  * @param bits the bit size for a component.
 | |
|  */
 | |
| modes.gcm.prototype.generateSubHashTable = function(mid, bits) {
 | |
|   // compute the table quickly by minimizing the number of
 | |
|   // POW operations -- they only need to be performed for powers of 2,
 | |
|   // all other entries can be composed from those powers using XOR
 | |
|   var size = 1 << bits;
 | |
|   var half = size >>> 1;
 | |
|   var m = new Array(size);
 | |
|   m[half] = mid.slice(0);
 | |
|   var i = half >>> 1;
 | |
|   while(i > 0) {
 | |
|     // raise m0[2 * i] and store in m0[i]
 | |
|     this.pow(m[2 * i], m[i] = []);
 | |
|     i >>= 1;
 | |
|   }
 | |
|   i = 2;
 | |
|   while(i < half) {
 | |
|     for(var j = 1; j < i; ++j) {
 | |
|       var m_i = m[i];
 | |
|       var m_j = m[j];
 | |
|       m[i + j] = [
 | |
|         m_i[0] ^ m_j[0],
 | |
|         m_i[1] ^ m_j[1],
 | |
|         m_i[2] ^ m_j[2],
 | |
|         m_i[3] ^ m_j[3]
 | |
|       ];
 | |
|     }
 | |
|     i *= 2;
 | |
|   }
 | |
|   m[0] = [0, 0, 0, 0];
 | |
|   /* Note: We could avoid storing these by doing composition during multiply
 | |
|   calculate top half using composition by speed is preferred. */
 | |
|   for(i = half + 1; i < size; ++i) {
 | |
|     var c = m[i ^ half];
 | |
|     m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]];
 | |
|   }
 | |
|   return m;
 | |
| };
 | |
| 
 | |
| /** Utility functions */
 | |
| 
 | |
| function transformIV(iv, blockSize) {
 | |
|   if(typeof iv === 'string') {
 | |
|     // convert iv string into byte buffer
 | |
|     iv = forge.util.createBuffer(iv);
 | |
|   }
 | |
| 
 | |
|   if(forge.util.isArray(iv) && iv.length > 4) {
 | |
|     // convert iv byte array into byte buffer
 | |
|     var tmp = iv;
 | |
|     iv = forge.util.createBuffer();
 | |
|     for(var i = 0; i < tmp.length; ++i) {
 | |
|       iv.putByte(tmp[i]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(iv.length() < blockSize) {
 | |
|     throw new Error(
 | |
|       'Invalid IV length; got ' + iv.length() +
 | |
|       ' bytes and expected ' + blockSize + ' bytes.');
 | |
|   }
 | |
| 
 | |
|   if(!forge.util.isArray(iv)) {
 | |
|     // convert iv byte buffer into 32-bit integer array
 | |
|     var ints = [];
 | |
|     var blocks = blockSize / 4;
 | |
|     for(var i = 0; i < blocks; ++i) {
 | |
|       ints.push(iv.getInt32());
 | |
|     }
 | |
|     iv = ints;
 | |
|   }
 | |
| 
 | |
|   return iv;
 | |
| }
 | |
| 
 | |
| function inc32(block) {
 | |
|   // increment last 32 bits of block only
 | |
|   block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF;
 | |
| }
 | |
| 
 | |
| function from64To32(num) {
 | |
|   // convert 64-bit number to two BE Int32s
 | |
|   return [(num / 0x100000000) | 0, num & 0xFFFFFFFF];
 | |
| }
 |