6819 lines
		
	
	
		
			216 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			6819 lines
		
	
	
		
			216 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /* pako 1.0.11 nodeca/pako */(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.pako = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i<t.length;i++)o(t[i]);return o}return r})()({1:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| 
 | |
| var zlib_deflate = require('./zlib/deflate');
 | |
| var utils        = require('./utils/common');
 | |
| var strings      = require('./utils/strings');
 | |
| var msg          = require('./zlib/messages');
 | |
| var ZStream      = require('./zlib/zstream');
 | |
| 
 | |
| var toString = Object.prototype.toString;
 | |
| 
 | |
| /* Public constants ==========================================================*/
 | |
| /* ===========================================================================*/
 | |
| 
 | |
| var Z_NO_FLUSH      = 0;
 | |
| var Z_FINISH        = 4;
 | |
| 
 | |
| var Z_OK            = 0;
 | |
| var Z_STREAM_END    = 1;
 | |
| var Z_SYNC_FLUSH    = 2;
 | |
| 
 | |
| var Z_DEFAULT_COMPRESSION = -1;
 | |
| 
 | |
| var Z_DEFAULT_STRATEGY    = 0;
 | |
| 
 | |
| var Z_DEFLATED  = 8;
 | |
| 
 | |
| /* ===========================================================================*/
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * class Deflate
 | |
|  *
 | |
|  * Generic JS-style wrapper for zlib calls. If you don't need
 | |
|  * streaming behaviour - use more simple functions: [[deflate]],
 | |
|  * [[deflateRaw]] and [[gzip]].
 | |
|  **/
 | |
| 
 | |
| /* internal
 | |
|  * Deflate.chunks -> Array
 | |
|  *
 | |
|  * Chunks of output data, if [[Deflate#onData]] not overridden.
 | |
|  **/
 | |
| 
 | |
| /**
 | |
|  * Deflate.result -> Uint8Array|Array
 | |
|  *
 | |
|  * Compressed result, generated by default [[Deflate#onData]]
 | |
|  * and [[Deflate#onEnd]] handlers. Filled after you push last chunk
 | |
|  * (call [[Deflate#push]] with `Z_FINISH` / `true` param)  or if you
 | |
|  * push a chunk with explicit flush (call [[Deflate#push]] with
 | |
|  * `Z_SYNC_FLUSH` param).
 | |
|  **/
 | |
| 
 | |
| /**
 | |
|  * Deflate.err -> Number
 | |
|  *
 | |
|  * Error code after deflate finished. 0 (Z_OK) on success.
 | |
|  * You will not need it in real life, because deflate errors
 | |
|  * are possible only on wrong options or bad `onData` / `onEnd`
 | |
|  * custom handlers.
 | |
|  **/
 | |
| 
 | |
| /**
 | |
|  * Deflate.msg -> String
 | |
|  *
 | |
|  * Error message, if [[Deflate.err]] != 0
 | |
|  **/
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * new Deflate(options)
 | |
|  * - options (Object): zlib deflate options.
 | |
|  *
 | |
|  * Creates new deflator instance with specified params. Throws exception
 | |
|  * on bad params. Supported options:
 | |
|  *
 | |
|  * - `level`
 | |
|  * - `windowBits`
 | |
|  * - `memLevel`
 | |
|  * - `strategy`
 | |
|  * - `dictionary`
 | |
|  *
 | |
|  * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 | |
|  * for more information on these.
 | |
|  *
 | |
|  * Additional options, for internal needs:
 | |
|  *
 | |
|  * - `chunkSize` - size of generated data chunks (16K by default)
 | |
|  * - `raw` (Boolean) - do raw deflate
 | |
|  * - `gzip` (Boolean) - create gzip wrapper
 | |
|  * - `to` (String) - if equal to 'string', then result will be "binary string"
 | |
|  *    (each char code [0..255])
 | |
|  * - `header` (Object) - custom header for gzip
 | |
|  *   - `text` (Boolean) - true if compressed data believed to be text
 | |
|  *   - `time` (Number) - modification time, unix timestamp
 | |
|  *   - `os` (Number) - operation system code
 | |
|  *   - `extra` (Array) - array of bytes with extra data (max 65536)
 | |
|  *   - `name` (String) - file name (binary string)
 | |
|  *   - `comment` (String) - comment (binary string)
 | |
|  *   - `hcrc` (Boolean) - true if header crc should be added
 | |
|  *
 | |
|  * ##### Example:
 | |
|  *
 | |
|  * ```javascript
 | |
|  * var pako = require('pako')
 | |
|  *   , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9])
 | |
|  *   , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]);
 | |
|  *
 | |
|  * var deflate = new pako.Deflate({ level: 3});
 | |
|  *
 | |
|  * deflate.push(chunk1, false);
 | |
|  * deflate.push(chunk2, true);  // true -> last chunk
 | |
|  *
 | |
|  * if (deflate.err) { throw new Error(deflate.err); }
 | |
|  *
 | |
|  * console.log(deflate.result);
 | |
|  * ```
 | |
|  **/
 | |
| function Deflate(options) {
 | |
|   if (!(this instanceof Deflate)) return new Deflate(options);
 | |
| 
 | |
|   this.options = utils.assign({
 | |
|     level: Z_DEFAULT_COMPRESSION,
 | |
|     method: Z_DEFLATED,
 | |
|     chunkSize: 16384,
 | |
|     windowBits: 15,
 | |
|     memLevel: 8,
 | |
|     strategy: Z_DEFAULT_STRATEGY,
 | |
|     to: ''
 | |
|   }, options || {});
 | |
| 
 | |
|   var opt = this.options;
 | |
| 
 | |
|   if (opt.raw && (opt.windowBits > 0)) {
 | |
|     opt.windowBits = -opt.windowBits;
 | |
|   }
 | |
| 
 | |
|   else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) {
 | |
|     opt.windowBits += 16;
 | |
|   }
 | |
| 
 | |
|   this.err    = 0;      // error code, if happens (0 = Z_OK)
 | |
|   this.msg    = '';     // error message
 | |
|   this.ended  = false;  // used to avoid multiple onEnd() calls
 | |
|   this.chunks = [];     // chunks of compressed data
 | |
| 
 | |
|   this.strm = new ZStream();
 | |
|   this.strm.avail_out = 0;
 | |
| 
 | |
|   var status = zlib_deflate.deflateInit2(
 | |
|     this.strm,
 | |
|     opt.level,
 | |
|     opt.method,
 | |
|     opt.windowBits,
 | |
|     opt.memLevel,
 | |
|     opt.strategy
 | |
|   );
 | |
| 
 | |
|   if (status !== Z_OK) {
 | |
|     throw new Error(msg[status]);
 | |
|   }
 | |
| 
 | |
|   if (opt.header) {
 | |
|     zlib_deflate.deflateSetHeader(this.strm, opt.header);
 | |
|   }
 | |
| 
 | |
|   if (opt.dictionary) {
 | |
|     var dict;
 | |
|     // Convert data if needed
 | |
|     if (typeof opt.dictionary === 'string') {
 | |
|       // If we need to compress text, change encoding to utf8.
 | |
|       dict = strings.string2buf(opt.dictionary);
 | |
|     } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {
 | |
|       dict = new Uint8Array(opt.dictionary);
 | |
|     } else {
 | |
|       dict = opt.dictionary;
 | |
|     }
 | |
| 
 | |
|     status = zlib_deflate.deflateSetDictionary(this.strm, dict);
 | |
| 
 | |
|     if (status !== Z_OK) {
 | |
|       throw new Error(msg[status]);
 | |
|     }
 | |
| 
 | |
|     this._dict_set = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Deflate#push(data[, mode]) -> Boolean
 | |
|  * - data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be
 | |
|  *   converted to utf8 byte sequence.
 | |
|  * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.
 | |
|  *   See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH.
 | |
|  *
 | |
|  * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with
 | |
|  * new compressed chunks. Returns `true` on success. The last data block must have
 | |
|  * mode Z_FINISH (or `true`). That will flush internal pending buffers and call
 | |
|  * [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you
 | |
|  * can use mode Z_SYNC_FLUSH, keeping the compression context.
 | |
|  *
 | |
|  * On fail call [[Deflate#onEnd]] with error code and return false.
 | |
|  *
 | |
|  * We strongly recommend to use `Uint8Array` on input for best speed (output
 | |
|  * array format is detected automatically). Also, don't skip last param and always
 | |
|  * use the same type in your code (boolean or number). That will improve JS speed.
 | |
|  *
 | |
|  * For regular `Array`-s make sure all elements are [0..255].
 | |
|  *
 | |
|  * ##### Example
 | |
|  *
 | |
|  * ```javascript
 | |
|  * push(chunk, false); // push one of data chunks
 | |
|  * ...
 | |
|  * push(chunk, true);  // push last chunk
 | |
|  * ```
 | |
|  **/
 | |
| Deflate.prototype.push = function (data, mode) {
 | |
|   var strm = this.strm;
 | |
|   var chunkSize = this.options.chunkSize;
 | |
|   var status, _mode;
 | |
| 
 | |
|   if (this.ended) { return false; }
 | |
| 
 | |
|   _mode = (mode === ~~mode) ? mode : ((mode === true) ? Z_FINISH : Z_NO_FLUSH);
 | |
| 
 | |
|   // Convert data if needed
 | |
|   if (typeof data === 'string') {
 | |
|     // If we need to compress text, change encoding to utf8.
 | |
|     strm.input = strings.string2buf(data);
 | |
|   } else if (toString.call(data) === '[object ArrayBuffer]') {
 | |
|     strm.input = new Uint8Array(data);
 | |
|   } else {
 | |
|     strm.input = data;
 | |
|   }
 | |
| 
 | |
|   strm.next_in = 0;
 | |
|   strm.avail_in = strm.input.length;
 | |
| 
 | |
|   do {
 | |
|     if (strm.avail_out === 0) {
 | |
|       strm.output = new utils.Buf8(chunkSize);
 | |
|       strm.next_out = 0;
 | |
|       strm.avail_out = chunkSize;
 | |
|     }
 | |
|     status = zlib_deflate.deflate(strm, _mode);    /* no bad return value */
 | |
| 
 | |
|     if (status !== Z_STREAM_END && status !== Z_OK) {
 | |
|       this.onEnd(status);
 | |
|       this.ended = true;
 | |
|       return false;
 | |
|     }
 | |
|     if (strm.avail_out === 0 || (strm.avail_in === 0 && (_mode === Z_FINISH || _mode === Z_SYNC_FLUSH))) {
 | |
|       if (this.options.to === 'string') {
 | |
|         this.onData(strings.buf2binstring(utils.shrinkBuf(strm.output, strm.next_out)));
 | |
|       } else {
 | |
|         this.onData(utils.shrinkBuf(strm.output, strm.next_out));
 | |
|       }
 | |
|     }
 | |
|   } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== Z_STREAM_END);
 | |
| 
 | |
|   // Finalize on the last chunk.
 | |
|   if (_mode === Z_FINISH) {
 | |
|     status = zlib_deflate.deflateEnd(this.strm);
 | |
|     this.onEnd(status);
 | |
|     this.ended = true;
 | |
|     return status === Z_OK;
 | |
|   }
 | |
| 
 | |
|   // callback interim results if Z_SYNC_FLUSH.
 | |
|   if (_mode === Z_SYNC_FLUSH) {
 | |
|     this.onEnd(Z_OK);
 | |
|     strm.avail_out = 0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Deflate#onData(chunk) -> Void
 | |
|  * - chunk (Uint8Array|Array|String): output data. Type of array depends
 | |
|  *   on js engine support. When string output requested, each chunk
 | |
|  *   will be string.
 | |
|  *
 | |
|  * By default, stores data blocks in `chunks[]` property and glue
 | |
|  * those in `onEnd`. Override this handler, if you need another behaviour.
 | |
|  **/
 | |
| Deflate.prototype.onData = function (chunk) {
 | |
|   this.chunks.push(chunk);
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Deflate#onEnd(status) -> Void
 | |
|  * - status (Number): deflate status. 0 (Z_OK) on success,
 | |
|  *   other if not.
 | |
|  *
 | |
|  * Called once after you tell deflate that the input stream is
 | |
|  * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH)
 | |
|  * or if an error happened. By default - join collected chunks,
 | |
|  * free memory and fill `results` / `err` properties.
 | |
|  **/
 | |
| Deflate.prototype.onEnd = function (status) {
 | |
|   // On success - join
 | |
|   if (status === Z_OK) {
 | |
|     if (this.options.to === 'string') {
 | |
|       this.result = this.chunks.join('');
 | |
|     } else {
 | |
|       this.result = utils.flattenChunks(this.chunks);
 | |
|     }
 | |
|   }
 | |
|   this.chunks = [];
 | |
|   this.err = status;
 | |
|   this.msg = this.strm.msg;
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * deflate(data[, options]) -> Uint8Array|Array|String
 | |
|  * - data (Uint8Array|Array|String): input data to compress.
 | |
|  * - options (Object): zlib deflate options.
 | |
|  *
 | |
|  * Compress `data` with deflate algorithm and `options`.
 | |
|  *
 | |
|  * Supported options are:
 | |
|  *
 | |
|  * - level
 | |
|  * - windowBits
 | |
|  * - memLevel
 | |
|  * - strategy
 | |
|  * - dictionary
 | |
|  *
 | |
|  * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 | |
|  * for more information on these.
 | |
|  *
 | |
|  * Sugar (options):
 | |
|  *
 | |
|  * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
 | |
|  *   negative windowBits implicitly.
 | |
|  * - `to` (String) - if equal to 'string', then result will be "binary string"
 | |
|  *    (each char code [0..255])
 | |
|  *
 | |
|  * ##### Example:
 | |
|  *
 | |
|  * ```javascript
 | |
|  * var pako = require('pako')
 | |
|  *   , data = Uint8Array([1,2,3,4,5,6,7,8,9]);
 | |
|  *
 | |
|  * console.log(pako.deflate(data));
 | |
|  * ```
 | |
|  **/
 | |
| function deflate(input, options) {
 | |
|   var deflator = new Deflate(options);
 | |
| 
 | |
|   deflator.push(input, true);
 | |
| 
 | |
|   // That will never happens, if you don't cheat with options :)
 | |
|   if (deflator.err) { throw deflator.msg || msg[deflator.err]; }
 | |
| 
 | |
|   return deflator.result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * deflateRaw(data[, options]) -> Uint8Array|Array|String
 | |
|  * - data (Uint8Array|Array|String): input data to compress.
 | |
|  * - options (Object): zlib deflate options.
 | |
|  *
 | |
|  * The same as [[deflate]], but creates raw data, without wrapper
 | |
|  * (header and adler32 crc).
 | |
|  **/
 | |
| function deflateRaw(input, options) {
 | |
|   options = options || {};
 | |
|   options.raw = true;
 | |
|   return deflate(input, options);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * gzip(data[, options]) -> Uint8Array|Array|String
 | |
|  * - data (Uint8Array|Array|String): input data to compress.
 | |
|  * - options (Object): zlib deflate options.
 | |
|  *
 | |
|  * The same as [[deflate]], but create gzip wrapper instead of
 | |
|  * deflate one.
 | |
|  **/
 | |
| function gzip(input, options) {
 | |
|   options = options || {};
 | |
|   options.gzip = true;
 | |
|   return deflate(input, options);
 | |
| }
 | |
| 
 | |
| 
 | |
| exports.Deflate = Deflate;
 | |
| exports.deflate = deflate;
 | |
| exports.deflateRaw = deflateRaw;
 | |
| exports.gzip = gzip;
 | |
| 
 | |
| },{"./utils/common":3,"./utils/strings":4,"./zlib/deflate":8,"./zlib/messages":13,"./zlib/zstream":15}],2:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| 
 | |
| var zlib_inflate = require('./zlib/inflate');
 | |
| var utils        = require('./utils/common');
 | |
| var strings      = require('./utils/strings');
 | |
| var c            = require('./zlib/constants');
 | |
| var msg          = require('./zlib/messages');
 | |
| var ZStream      = require('./zlib/zstream');
 | |
| var GZheader     = require('./zlib/gzheader');
 | |
| 
 | |
| var toString = Object.prototype.toString;
 | |
| 
 | |
| /**
 | |
|  * class Inflate
 | |
|  *
 | |
|  * Generic JS-style wrapper for zlib calls. If you don't need
 | |
|  * streaming behaviour - use more simple functions: [[inflate]]
 | |
|  * and [[inflateRaw]].
 | |
|  **/
 | |
| 
 | |
| /* internal
 | |
|  * inflate.chunks -> Array
 | |
|  *
 | |
|  * Chunks of output data, if [[Inflate#onData]] not overridden.
 | |
|  **/
 | |
| 
 | |
| /**
 | |
|  * Inflate.result -> Uint8Array|Array|String
 | |
|  *
 | |
|  * Uncompressed result, generated by default [[Inflate#onData]]
 | |
|  * and [[Inflate#onEnd]] handlers. Filled after you push last chunk
 | |
|  * (call [[Inflate#push]] with `Z_FINISH` / `true` param) or if you
 | |
|  * push a chunk with explicit flush (call [[Inflate#push]] with
 | |
|  * `Z_SYNC_FLUSH` param).
 | |
|  **/
 | |
| 
 | |
| /**
 | |
|  * Inflate.err -> Number
 | |
|  *
 | |
|  * Error code after inflate finished. 0 (Z_OK) on success.
 | |
|  * Should be checked if broken data possible.
 | |
|  **/
 | |
| 
 | |
| /**
 | |
|  * Inflate.msg -> String
 | |
|  *
 | |
|  * Error message, if [[Inflate.err]] != 0
 | |
|  **/
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * new Inflate(options)
 | |
|  * - options (Object): zlib inflate options.
 | |
|  *
 | |
|  * Creates new inflator instance with specified params. Throws exception
 | |
|  * on bad params. Supported options:
 | |
|  *
 | |
|  * - `windowBits`
 | |
|  * - `dictionary`
 | |
|  *
 | |
|  * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 | |
|  * for more information on these.
 | |
|  *
 | |
|  * Additional options, for internal needs:
 | |
|  *
 | |
|  * - `chunkSize` - size of generated data chunks (16K by default)
 | |
|  * - `raw` (Boolean) - do raw inflate
 | |
|  * - `to` (String) - if equal to 'string', then result will be converted
 | |
|  *   from utf8 to utf16 (javascript) string. When string output requested,
 | |
|  *   chunk length can differ from `chunkSize`, depending on content.
 | |
|  *
 | |
|  * By default, when no options set, autodetect deflate/gzip data format via
 | |
|  * wrapper header.
 | |
|  *
 | |
|  * ##### Example:
 | |
|  *
 | |
|  * ```javascript
 | |
|  * var pako = require('pako')
 | |
|  *   , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9])
 | |
|  *   , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]);
 | |
|  *
 | |
|  * var inflate = new pako.Inflate({ level: 3});
 | |
|  *
 | |
|  * inflate.push(chunk1, false);
 | |
|  * inflate.push(chunk2, true);  // true -> last chunk
 | |
|  *
 | |
|  * if (inflate.err) { throw new Error(inflate.err); }
 | |
|  *
 | |
|  * console.log(inflate.result);
 | |
|  * ```
 | |
|  **/
 | |
| function Inflate(options) {
 | |
|   if (!(this instanceof Inflate)) return new Inflate(options);
 | |
| 
 | |
|   this.options = utils.assign({
 | |
|     chunkSize: 16384,
 | |
|     windowBits: 0,
 | |
|     to: ''
 | |
|   }, options || {});
 | |
| 
 | |
|   var opt = this.options;
 | |
| 
 | |
|   // Force window size for `raw` data, if not set directly,
 | |
|   // because we have no header for autodetect.
 | |
|   if (opt.raw && (opt.windowBits >= 0) && (opt.windowBits < 16)) {
 | |
|     opt.windowBits = -opt.windowBits;
 | |
|     if (opt.windowBits === 0) { opt.windowBits = -15; }
 | |
|   }
 | |
| 
 | |
|   // If `windowBits` not defined (and mode not raw) - set autodetect flag for gzip/deflate
 | |
|   if ((opt.windowBits >= 0) && (opt.windowBits < 16) &&
 | |
|       !(options && options.windowBits)) {
 | |
|     opt.windowBits += 32;
 | |
|   }
 | |
| 
 | |
|   // Gzip header has no info about windows size, we can do autodetect only
 | |
|   // for deflate. So, if window size not set, force it to max when gzip possible
 | |
|   if ((opt.windowBits > 15) && (opt.windowBits < 48)) {
 | |
|     // bit 3 (16) -> gzipped data
 | |
|     // bit 4 (32) -> autodetect gzip/deflate
 | |
|     if ((opt.windowBits & 15) === 0) {
 | |
|       opt.windowBits |= 15;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   this.err    = 0;      // error code, if happens (0 = Z_OK)
 | |
|   this.msg    = '';     // error message
 | |
|   this.ended  = false;  // used to avoid multiple onEnd() calls
 | |
|   this.chunks = [];     // chunks of compressed data
 | |
| 
 | |
|   this.strm   = new ZStream();
 | |
|   this.strm.avail_out = 0;
 | |
| 
 | |
|   var status  = zlib_inflate.inflateInit2(
 | |
|     this.strm,
 | |
|     opt.windowBits
 | |
|   );
 | |
| 
 | |
|   if (status !== c.Z_OK) {
 | |
|     throw new Error(msg[status]);
 | |
|   }
 | |
| 
 | |
|   this.header = new GZheader();
 | |
| 
 | |
|   zlib_inflate.inflateGetHeader(this.strm, this.header);
 | |
| 
 | |
|   // Setup dictionary
 | |
|   if (opt.dictionary) {
 | |
|     // Convert data if needed
 | |
|     if (typeof opt.dictionary === 'string') {
 | |
|       opt.dictionary = strings.string2buf(opt.dictionary);
 | |
|     } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {
 | |
|       opt.dictionary = new Uint8Array(opt.dictionary);
 | |
|     }
 | |
|     if (opt.raw) { //In raw mode we need to set the dictionary early
 | |
|       status = zlib_inflate.inflateSetDictionary(this.strm, opt.dictionary);
 | |
|       if (status !== c.Z_OK) {
 | |
|         throw new Error(msg[status]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Inflate#push(data[, mode]) -> Boolean
 | |
|  * - data (Uint8Array|Array|ArrayBuffer|String): input data
 | |
|  * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.
 | |
|  *   See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH.
 | |
|  *
 | |
|  * Sends input data to inflate pipe, generating [[Inflate#onData]] calls with
 | |
|  * new output chunks. Returns `true` on success. The last data block must have
 | |
|  * mode Z_FINISH (or `true`). That will flush internal pending buffers and call
 | |
|  * [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you
 | |
|  * can use mode Z_SYNC_FLUSH, keeping the decompression context.
 | |
|  *
 | |
|  * On fail call [[Inflate#onEnd]] with error code and return false.
 | |
|  *
 | |
|  * We strongly recommend to use `Uint8Array` on input for best speed (output
 | |
|  * format is detected automatically). Also, don't skip last param and always
 | |
|  * use the same type in your code (boolean or number). That will improve JS speed.
 | |
|  *
 | |
|  * For regular `Array`-s make sure all elements are [0..255].
 | |
|  *
 | |
|  * ##### Example
 | |
|  *
 | |
|  * ```javascript
 | |
|  * push(chunk, false); // push one of data chunks
 | |
|  * ...
 | |
|  * push(chunk, true);  // push last chunk
 | |
|  * ```
 | |
|  **/
 | |
| Inflate.prototype.push = function (data, mode) {
 | |
|   var strm = this.strm;
 | |
|   var chunkSize = this.options.chunkSize;
 | |
|   var dictionary = this.options.dictionary;
 | |
|   var status, _mode;
 | |
|   var next_out_utf8, tail, utf8str;
 | |
| 
 | |
|   // Flag to properly process Z_BUF_ERROR on testing inflate call
 | |
|   // when we check that all output data was flushed.
 | |
|   var allowBufError = false;
 | |
| 
 | |
|   if (this.ended) { return false; }
 | |
|   _mode = (mode === ~~mode) ? mode : ((mode === true) ? c.Z_FINISH : c.Z_NO_FLUSH);
 | |
| 
 | |
|   // Convert data if needed
 | |
|   if (typeof data === 'string') {
 | |
|     // Only binary strings can be decompressed on practice
 | |
|     strm.input = strings.binstring2buf(data);
 | |
|   } else if (toString.call(data) === '[object ArrayBuffer]') {
 | |
|     strm.input = new Uint8Array(data);
 | |
|   } else {
 | |
|     strm.input = data;
 | |
|   }
 | |
| 
 | |
|   strm.next_in = 0;
 | |
|   strm.avail_in = strm.input.length;
 | |
| 
 | |
|   do {
 | |
|     if (strm.avail_out === 0) {
 | |
|       strm.output = new utils.Buf8(chunkSize);
 | |
|       strm.next_out = 0;
 | |
|       strm.avail_out = chunkSize;
 | |
|     }
 | |
| 
 | |
|     status = zlib_inflate.inflate(strm, c.Z_NO_FLUSH);    /* no bad return value */
 | |
| 
 | |
|     if (status === c.Z_NEED_DICT && dictionary) {
 | |
|       status = zlib_inflate.inflateSetDictionary(this.strm, dictionary);
 | |
|     }
 | |
| 
 | |
|     if (status === c.Z_BUF_ERROR && allowBufError === true) {
 | |
|       status = c.Z_OK;
 | |
|       allowBufError = false;
 | |
|     }
 | |
| 
 | |
|     if (status !== c.Z_STREAM_END && status !== c.Z_OK) {
 | |
|       this.onEnd(status);
 | |
|       this.ended = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (strm.next_out) {
 | |
|       if (strm.avail_out === 0 || status === c.Z_STREAM_END || (strm.avail_in === 0 && (_mode === c.Z_FINISH || _mode === c.Z_SYNC_FLUSH))) {
 | |
| 
 | |
|         if (this.options.to === 'string') {
 | |
| 
 | |
|           next_out_utf8 = strings.utf8border(strm.output, strm.next_out);
 | |
| 
 | |
|           tail = strm.next_out - next_out_utf8;
 | |
|           utf8str = strings.buf2string(strm.output, next_out_utf8);
 | |
| 
 | |
|           // move tail
 | |
|           strm.next_out = tail;
 | |
|           strm.avail_out = chunkSize - tail;
 | |
|           if (tail) { utils.arraySet(strm.output, strm.output, next_out_utf8, tail, 0); }
 | |
| 
 | |
|           this.onData(utf8str);
 | |
| 
 | |
|         } else {
 | |
|           this.onData(utils.shrinkBuf(strm.output, strm.next_out));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // When no more input data, we should check that internal inflate buffers
 | |
|     // are flushed. The only way to do it when avail_out = 0 - run one more
 | |
|     // inflate pass. But if output data not exists, inflate return Z_BUF_ERROR.
 | |
|     // Here we set flag to process this error properly.
 | |
|     //
 | |
|     // NOTE. Deflate does not return error in this case and does not needs such
 | |
|     // logic.
 | |
|     if (strm.avail_in === 0 && strm.avail_out === 0) {
 | |
|       allowBufError = true;
 | |
|     }
 | |
| 
 | |
|   } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== c.Z_STREAM_END);
 | |
| 
 | |
|   if (status === c.Z_STREAM_END) {
 | |
|     _mode = c.Z_FINISH;
 | |
|   }
 | |
| 
 | |
|   // Finalize on the last chunk.
 | |
|   if (_mode === c.Z_FINISH) {
 | |
|     status = zlib_inflate.inflateEnd(this.strm);
 | |
|     this.onEnd(status);
 | |
|     this.ended = true;
 | |
|     return status === c.Z_OK;
 | |
|   }
 | |
| 
 | |
|   // callback interim results if Z_SYNC_FLUSH.
 | |
|   if (_mode === c.Z_SYNC_FLUSH) {
 | |
|     this.onEnd(c.Z_OK);
 | |
|     strm.avail_out = 0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Inflate#onData(chunk) -> Void
 | |
|  * - chunk (Uint8Array|Array|String): output data. Type of array depends
 | |
|  *   on js engine support. When string output requested, each chunk
 | |
|  *   will be string.
 | |
|  *
 | |
|  * By default, stores data blocks in `chunks[]` property and glue
 | |
|  * those in `onEnd`. Override this handler, if you need another behaviour.
 | |
|  **/
 | |
| Inflate.prototype.onData = function (chunk) {
 | |
|   this.chunks.push(chunk);
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Inflate#onEnd(status) -> Void
 | |
|  * - status (Number): inflate status. 0 (Z_OK) on success,
 | |
|  *   other if not.
 | |
|  *
 | |
|  * Called either after you tell inflate that the input stream is
 | |
|  * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH)
 | |
|  * or if an error happened. By default - join collected chunks,
 | |
|  * free memory and fill `results` / `err` properties.
 | |
|  **/
 | |
| Inflate.prototype.onEnd = function (status) {
 | |
|   // On success - join
 | |
|   if (status === c.Z_OK) {
 | |
|     if (this.options.to === 'string') {
 | |
|       // Glue & convert here, until we teach pako to send
 | |
|       // utf8 aligned strings to onData
 | |
|       this.result = this.chunks.join('');
 | |
|     } else {
 | |
|       this.result = utils.flattenChunks(this.chunks);
 | |
|     }
 | |
|   }
 | |
|   this.chunks = [];
 | |
|   this.err = status;
 | |
|   this.msg = this.strm.msg;
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * inflate(data[, options]) -> Uint8Array|Array|String
 | |
|  * - data (Uint8Array|Array|String): input data to decompress.
 | |
|  * - options (Object): zlib inflate options.
 | |
|  *
 | |
|  * Decompress `data` with inflate/ungzip and `options`. Autodetect
 | |
|  * format via wrapper header by default. That's why we don't provide
 | |
|  * separate `ungzip` method.
 | |
|  *
 | |
|  * Supported options are:
 | |
|  *
 | |
|  * - windowBits
 | |
|  *
 | |
|  * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 | |
|  * for more information.
 | |
|  *
 | |
|  * Sugar (options):
 | |
|  *
 | |
|  * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
 | |
|  *   negative windowBits implicitly.
 | |
|  * - `to` (String) - if equal to 'string', then result will be converted
 | |
|  *   from utf8 to utf16 (javascript) string. When string output requested,
 | |
|  *   chunk length can differ from `chunkSize`, depending on content.
 | |
|  *
 | |
|  *
 | |
|  * ##### Example:
 | |
|  *
 | |
|  * ```javascript
 | |
|  * var pako = require('pako')
 | |
|  *   , input = pako.deflate([1,2,3,4,5,6,7,8,9])
 | |
|  *   , output;
 | |
|  *
 | |
|  * try {
 | |
|  *   output = pako.inflate(input);
 | |
|  * } catch (err)
 | |
|  *   console.log(err);
 | |
|  * }
 | |
|  * ```
 | |
|  **/
 | |
| function inflate(input, options) {
 | |
|   var inflator = new Inflate(options);
 | |
| 
 | |
|   inflator.push(input, true);
 | |
| 
 | |
|   // That will never happens, if you don't cheat with options :)
 | |
|   if (inflator.err) { throw inflator.msg || msg[inflator.err]; }
 | |
| 
 | |
|   return inflator.result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * inflateRaw(data[, options]) -> Uint8Array|Array|String
 | |
|  * - data (Uint8Array|Array|String): input data to decompress.
 | |
|  * - options (Object): zlib inflate options.
 | |
|  *
 | |
|  * The same as [[inflate]], but creates raw data, without wrapper
 | |
|  * (header and adler32 crc).
 | |
|  **/
 | |
| function inflateRaw(input, options) {
 | |
|   options = options || {};
 | |
|   options.raw = true;
 | |
|   return inflate(input, options);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * ungzip(data[, options]) -> Uint8Array|Array|String
 | |
|  * - data (Uint8Array|Array|String): input data to decompress.
 | |
|  * - options (Object): zlib inflate options.
 | |
|  *
 | |
|  * Just shortcut to [[inflate]], because it autodetects format
 | |
|  * by header.content. Done for convenience.
 | |
|  **/
 | |
| 
 | |
| 
 | |
| exports.Inflate = Inflate;
 | |
| exports.inflate = inflate;
 | |
| exports.inflateRaw = inflateRaw;
 | |
| exports.ungzip  = inflate;
 | |
| 
 | |
| },{"./utils/common":3,"./utils/strings":4,"./zlib/constants":6,"./zlib/gzheader":9,"./zlib/inflate":11,"./zlib/messages":13,"./zlib/zstream":15}],3:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| 
 | |
| var TYPED_OK =  (typeof Uint8Array !== 'undefined') &&
 | |
|                 (typeof Uint16Array !== 'undefined') &&
 | |
|                 (typeof Int32Array !== 'undefined');
 | |
| 
 | |
| function _has(obj, key) {
 | |
|   return Object.prototype.hasOwnProperty.call(obj, key);
 | |
| }
 | |
| 
 | |
| exports.assign = function (obj /*from1, from2, from3, ...*/) {
 | |
|   var sources = Array.prototype.slice.call(arguments, 1);
 | |
|   while (sources.length) {
 | |
|     var source = sources.shift();
 | |
|     if (!source) { continue; }
 | |
| 
 | |
|     if (typeof source !== 'object') {
 | |
|       throw new TypeError(source + 'must be non-object');
 | |
|     }
 | |
| 
 | |
|     for (var p in source) {
 | |
|       if (_has(source, p)) {
 | |
|         obj[p] = source[p];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return obj;
 | |
| };
 | |
| 
 | |
| 
 | |
| // reduce buffer size, avoiding mem copy
 | |
| exports.shrinkBuf = function (buf, size) {
 | |
|   if (buf.length === size) { return buf; }
 | |
|   if (buf.subarray) { return buf.subarray(0, size); }
 | |
|   buf.length = size;
 | |
|   return buf;
 | |
| };
 | |
| 
 | |
| 
 | |
| var fnTyped = {
 | |
|   arraySet: function (dest, src, src_offs, len, dest_offs) {
 | |
|     if (src.subarray && dest.subarray) {
 | |
|       dest.set(src.subarray(src_offs, src_offs + len), dest_offs);
 | |
|       return;
 | |
|     }
 | |
|     // Fallback to ordinary array
 | |
|     for (var i = 0; i < len; i++) {
 | |
|       dest[dest_offs + i] = src[src_offs + i];
 | |
|     }
 | |
|   },
 | |
|   // Join array of chunks to single array.
 | |
|   flattenChunks: function (chunks) {
 | |
|     var i, l, len, pos, chunk, result;
 | |
| 
 | |
|     // calculate data length
 | |
|     len = 0;
 | |
|     for (i = 0, l = chunks.length; i < l; i++) {
 | |
|       len += chunks[i].length;
 | |
|     }
 | |
| 
 | |
|     // join chunks
 | |
|     result = new Uint8Array(len);
 | |
|     pos = 0;
 | |
|     for (i = 0, l = chunks.length; i < l; i++) {
 | |
|       chunk = chunks[i];
 | |
|       result.set(chunk, pos);
 | |
|       pos += chunk.length;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
|   }
 | |
| };
 | |
| 
 | |
| var fnUntyped = {
 | |
|   arraySet: function (dest, src, src_offs, len, dest_offs) {
 | |
|     for (var i = 0; i < len; i++) {
 | |
|       dest[dest_offs + i] = src[src_offs + i];
 | |
|     }
 | |
|   },
 | |
|   // Join array of chunks to single array.
 | |
|   flattenChunks: function (chunks) {
 | |
|     return [].concat.apply([], chunks);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| // Enable/Disable typed arrays use, for testing
 | |
| //
 | |
| exports.setTyped = function (on) {
 | |
|   if (on) {
 | |
|     exports.Buf8  = Uint8Array;
 | |
|     exports.Buf16 = Uint16Array;
 | |
|     exports.Buf32 = Int32Array;
 | |
|     exports.assign(exports, fnTyped);
 | |
|   } else {
 | |
|     exports.Buf8  = Array;
 | |
|     exports.Buf16 = Array;
 | |
|     exports.Buf32 = Array;
 | |
|     exports.assign(exports, fnUntyped);
 | |
|   }
 | |
| };
 | |
| 
 | |
| exports.setTyped(TYPED_OK);
 | |
| 
 | |
| },{}],4:[function(require,module,exports){
 | |
| // String encode/decode helpers
 | |
| 'use strict';
 | |
| 
 | |
| 
 | |
| var utils = require('./common');
 | |
| 
 | |
| 
 | |
| // Quick check if we can use fast array to bin string conversion
 | |
| //
 | |
| // - apply(Array) can fail on Android 2.2
 | |
| // - apply(Uint8Array) can fail on iOS 5.1 Safari
 | |
| //
 | |
| var STR_APPLY_OK = true;
 | |
| var STR_APPLY_UIA_OK = true;
 | |
| 
 | |
| try { String.fromCharCode.apply(null, [ 0 ]); } catch (__) { STR_APPLY_OK = false; }
 | |
| try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; }
 | |
| 
 | |
| 
 | |
| // Table with utf8 lengths (calculated by first byte of sequence)
 | |
| // Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS,
 | |
| // because max possible codepoint is 0x10ffff
 | |
| var _utf8len = new utils.Buf8(256);
 | |
| for (var q = 0; q < 256; q++) {
 | |
|   _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1);
 | |
| }
 | |
| _utf8len[254] = _utf8len[254] = 1; // Invalid sequence start
 | |
| 
 | |
| 
 | |
| // convert string to array (typed, when possible)
 | |
| exports.string2buf = function (str) {
 | |
|   var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0;
 | |
| 
 | |
|   // count binary size
 | |
|   for (m_pos = 0; m_pos < str_len; m_pos++) {
 | |
|     c = str.charCodeAt(m_pos);
 | |
|     if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
 | |
|       c2 = str.charCodeAt(m_pos + 1);
 | |
|       if ((c2 & 0xfc00) === 0xdc00) {
 | |
|         c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
 | |
|         m_pos++;
 | |
|       }
 | |
|     }
 | |
|     buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4;
 | |
|   }
 | |
| 
 | |
|   // allocate buffer
 | |
|   buf = new utils.Buf8(buf_len);
 | |
| 
 | |
|   // convert
 | |
|   for (i = 0, m_pos = 0; i < buf_len; m_pos++) {
 | |
|     c = str.charCodeAt(m_pos);
 | |
|     if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
 | |
|       c2 = str.charCodeAt(m_pos + 1);
 | |
|       if ((c2 & 0xfc00) === 0xdc00) {
 | |
|         c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
 | |
|         m_pos++;
 | |
|       }
 | |
|     }
 | |
|     if (c < 0x80) {
 | |
|       /* one byte */
 | |
|       buf[i++] = c;
 | |
|     } else if (c < 0x800) {
 | |
|       /* two bytes */
 | |
|       buf[i++] = 0xC0 | (c >>> 6);
 | |
|       buf[i++] = 0x80 | (c & 0x3f);
 | |
|     } else if (c < 0x10000) {
 | |
|       /* three bytes */
 | |
|       buf[i++] = 0xE0 | (c >>> 12);
 | |
|       buf[i++] = 0x80 | (c >>> 6 & 0x3f);
 | |
|       buf[i++] = 0x80 | (c & 0x3f);
 | |
|     } else {
 | |
|       /* four bytes */
 | |
|       buf[i++] = 0xf0 | (c >>> 18);
 | |
|       buf[i++] = 0x80 | (c >>> 12 & 0x3f);
 | |
|       buf[i++] = 0x80 | (c >>> 6 & 0x3f);
 | |
|       buf[i++] = 0x80 | (c & 0x3f);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return buf;
 | |
| };
 | |
| 
 | |
| // Helper (used in 2 places)
 | |
| function buf2binstring(buf, len) {
 | |
|   // On Chrome, the arguments in a function call that are allowed is `65534`.
 | |
|   // If the length of the buffer is smaller than that, we can use this optimization,
 | |
|   // otherwise we will take a slower path.
 | |
|   if (len < 65534) {
 | |
|     if ((buf.subarray && STR_APPLY_UIA_OK) || (!buf.subarray && STR_APPLY_OK)) {
 | |
|       return String.fromCharCode.apply(null, utils.shrinkBuf(buf, len));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   var result = '';
 | |
|   for (var i = 0; i < len; i++) {
 | |
|     result += String.fromCharCode(buf[i]);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Convert byte array to binary string
 | |
| exports.buf2binstring = function (buf) {
 | |
|   return buf2binstring(buf, buf.length);
 | |
| };
 | |
| 
 | |
| 
 | |
| // Convert binary string (typed, when possible)
 | |
| exports.binstring2buf = function (str) {
 | |
|   var buf = new utils.Buf8(str.length);
 | |
|   for (var i = 0, len = buf.length; i < len; i++) {
 | |
|     buf[i] = str.charCodeAt(i);
 | |
|   }
 | |
|   return buf;
 | |
| };
 | |
| 
 | |
| 
 | |
| // convert array to string
 | |
| exports.buf2string = function (buf, max) {
 | |
|   var i, out, c, c_len;
 | |
|   var len = max || buf.length;
 | |
| 
 | |
|   // Reserve max possible length (2 words per char)
 | |
|   // NB: by unknown reasons, Array is significantly faster for
 | |
|   //     String.fromCharCode.apply than Uint16Array.
 | |
|   var utf16buf = new Array(len * 2);
 | |
| 
 | |
|   for (out = 0, i = 0; i < len;) {
 | |
|     c = buf[i++];
 | |
|     // quick process ascii
 | |
|     if (c < 0x80) { utf16buf[out++] = c; continue; }
 | |
| 
 | |
|     c_len = _utf8len[c];
 | |
|     // skip 5 & 6 byte codes
 | |
|     if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; }
 | |
| 
 | |
|     // apply mask on first byte
 | |
|     c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07;
 | |
|     // join the rest
 | |
|     while (c_len > 1 && i < len) {
 | |
|       c = (c << 6) | (buf[i++] & 0x3f);
 | |
|       c_len--;
 | |
|     }
 | |
| 
 | |
|     // terminated by end of string?
 | |
|     if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; }
 | |
| 
 | |
|     if (c < 0x10000) {
 | |
|       utf16buf[out++] = c;
 | |
|     } else {
 | |
|       c -= 0x10000;
 | |
|       utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff);
 | |
|       utf16buf[out++] = 0xdc00 | (c & 0x3ff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return buf2binstring(utf16buf, out);
 | |
| };
 | |
| 
 | |
| 
 | |
| // Calculate max possible position in utf8 buffer,
 | |
| // that will not break sequence. If that's not possible
 | |
| // - (very small limits) return max size as is.
 | |
| //
 | |
| // buf[] - utf8 bytes array
 | |
| // max   - length limit (mandatory);
 | |
| exports.utf8border = function (buf, max) {
 | |
|   var pos;
 | |
| 
 | |
|   max = max || buf.length;
 | |
|   if (max > buf.length) { max = buf.length; }
 | |
| 
 | |
|   // go back from last position, until start of sequence found
 | |
|   pos = max - 1;
 | |
|   while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; }
 | |
| 
 | |
|   // Very small and broken sequence,
 | |
|   // return max, because we should return something anyway.
 | |
|   if (pos < 0) { return max; }
 | |
| 
 | |
|   // If we came to start of buffer - that means buffer is too small,
 | |
|   // return max too.
 | |
|   if (pos === 0) { return max; }
 | |
| 
 | |
|   return (pos + _utf8len[buf[pos]] > max) ? pos : max;
 | |
| };
 | |
| 
 | |
| },{"./common":3}],5:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // Note: adler32 takes 12% for level 0 and 2% for level 6.
 | |
| // It isn't worth it to make additional optimizations as in original.
 | |
| // Small size is preferable.
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| function adler32(adler, buf, len, pos) {
 | |
|   var s1 = (adler & 0xffff) |0,
 | |
|       s2 = ((adler >>> 16) & 0xffff) |0,
 | |
|       n = 0;
 | |
| 
 | |
|   while (len !== 0) {
 | |
|     // Set limit ~ twice less than 5552, to keep
 | |
|     // s2 in 31-bits, because we force signed ints.
 | |
|     // in other case %= will fail.
 | |
|     n = len > 2000 ? 2000 : len;
 | |
|     len -= n;
 | |
| 
 | |
|     do {
 | |
|       s1 = (s1 + buf[pos++]) |0;
 | |
|       s2 = (s2 + s1) |0;
 | |
|     } while (--n);
 | |
| 
 | |
|     s1 %= 65521;
 | |
|     s2 %= 65521;
 | |
|   }
 | |
| 
 | |
|   return (s1 | (s2 << 16)) |0;
 | |
| }
 | |
| 
 | |
| 
 | |
| module.exports = adler32;
 | |
| 
 | |
| },{}],6:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| module.exports = {
 | |
| 
 | |
|   /* Allowed flush values; see deflate() and inflate() below for details */
 | |
|   Z_NO_FLUSH:         0,
 | |
|   Z_PARTIAL_FLUSH:    1,
 | |
|   Z_SYNC_FLUSH:       2,
 | |
|   Z_FULL_FLUSH:       3,
 | |
|   Z_FINISH:           4,
 | |
|   Z_BLOCK:            5,
 | |
|   Z_TREES:            6,
 | |
| 
 | |
|   /* Return codes for the compression/decompression functions. Negative values
 | |
|   * are errors, positive values are used for special but normal events.
 | |
|   */
 | |
|   Z_OK:               0,
 | |
|   Z_STREAM_END:       1,
 | |
|   Z_NEED_DICT:        2,
 | |
|   Z_ERRNO:           -1,
 | |
|   Z_STREAM_ERROR:    -2,
 | |
|   Z_DATA_ERROR:      -3,
 | |
|   //Z_MEM_ERROR:     -4,
 | |
|   Z_BUF_ERROR:       -5,
 | |
|   //Z_VERSION_ERROR: -6,
 | |
| 
 | |
|   /* compression levels */
 | |
|   Z_NO_COMPRESSION:         0,
 | |
|   Z_BEST_SPEED:             1,
 | |
|   Z_BEST_COMPRESSION:       9,
 | |
|   Z_DEFAULT_COMPRESSION:   -1,
 | |
| 
 | |
| 
 | |
|   Z_FILTERED:               1,
 | |
|   Z_HUFFMAN_ONLY:           2,
 | |
|   Z_RLE:                    3,
 | |
|   Z_FIXED:                  4,
 | |
|   Z_DEFAULT_STRATEGY:       0,
 | |
| 
 | |
|   /* Possible values of the data_type field (though see inflate()) */
 | |
|   Z_BINARY:                 0,
 | |
|   Z_TEXT:                   1,
 | |
|   //Z_ASCII:                1, // = Z_TEXT (deprecated)
 | |
|   Z_UNKNOWN:                2,
 | |
| 
 | |
|   /* The deflate compression method */
 | |
|   Z_DEFLATED:               8
 | |
|   //Z_NULL:                 null // Use -1 or null inline, depending on var type
 | |
| };
 | |
| 
 | |
| },{}],7:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // Note: we can't get significant speed boost here.
 | |
| // So write code to minimize size - no pregenerated tables
 | |
| // and array tools dependencies.
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| // Use ordinary array, since untyped makes no boost here
 | |
| function makeTable() {
 | |
|   var c, table = [];
 | |
| 
 | |
|   for (var n = 0; n < 256; n++) {
 | |
|     c = n;
 | |
|     for (var k = 0; k < 8; k++) {
 | |
|       c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1));
 | |
|     }
 | |
|     table[n] = c;
 | |
|   }
 | |
| 
 | |
|   return table;
 | |
| }
 | |
| 
 | |
| // Create table on load. Just 255 signed longs. Not a problem.
 | |
| var crcTable = makeTable();
 | |
| 
 | |
| 
 | |
| function crc32(crc, buf, len, pos) {
 | |
|   var t = crcTable,
 | |
|       end = pos + len;
 | |
| 
 | |
|   crc ^= -1;
 | |
| 
 | |
|   for (var i = pos; i < end; i++) {
 | |
|     crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF];
 | |
|   }
 | |
| 
 | |
|   return (crc ^ (-1)); // >>> 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| module.exports = crc32;
 | |
| 
 | |
| },{}],8:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| var utils   = require('../utils/common');
 | |
| var trees   = require('./trees');
 | |
| var adler32 = require('./adler32');
 | |
| var crc32   = require('./crc32');
 | |
| var msg     = require('./messages');
 | |
| 
 | |
| /* Public constants ==========================================================*/
 | |
| /* ===========================================================================*/
 | |
| 
 | |
| 
 | |
| /* Allowed flush values; see deflate() and inflate() below for details */
 | |
| var Z_NO_FLUSH      = 0;
 | |
| var Z_PARTIAL_FLUSH = 1;
 | |
| //var Z_SYNC_FLUSH    = 2;
 | |
| var Z_FULL_FLUSH    = 3;
 | |
| var Z_FINISH        = 4;
 | |
| var Z_BLOCK         = 5;
 | |
| //var Z_TREES         = 6;
 | |
| 
 | |
| 
 | |
| /* Return codes for the compression/decompression functions. Negative values
 | |
|  * are errors, positive values are used for special but normal events.
 | |
|  */
 | |
| var Z_OK            = 0;
 | |
| var Z_STREAM_END    = 1;
 | |
| //var Z_NEED_DICT     = 2;
 | |
| //var Z_ERRNO         = -1;
 | |
| var Z_STREAM_ERROR  = -2;
 | |
| var Z_DATA_ERROR    = -3;
 | |
| //var Z_MEM_ERROR     = -4;
 | |
| var Z_BUF_ERROR     = -5;
 | |
| //var Z_VERSION_ERROR = -6;
 | |
| 
 | |
| 
 | |
| /* compression levels */
 | |
| //var Z_NO_COMPRESSION      = 0;
 | |
| //var Z_BEST_SPEED          = 1;
 | |
| //var Z_BEST_COMPRESSION    = 9;
 | |
| var Z_DEFAULT_COMPRESSION = -1;
 | |
| 
 | |
| 
 | |
| var Z_FILTERED            = 1;
 | |
| var Z_HUFFMAN_ONLY        = 2;
 | |
| var Z_RLE                 = 3;
 | |
| var Z_FIXED               = 4;
 | |
| var Z_DEFAULT_STRATEGY    = 0;
 | |
| 
 | |
| /* Possible values of the data_type field (though see inflate()) */
 | |
| //var Z_BINARY              = 0;
 | |
| //var Z_TEXT                = 1;
 | |
| //var Z_ASCII               = 1; // = Z_TEXT
 | |
| var Z_UNKNOWN             = 2;
 | |
| 
 | |
| 
 | |
| /* The deflate compression method */
 | |
| var Z_DEFLATED  = 8;
 | |
| 
 | |
| /*============================================================================*/
 | |
| 
 | |
| 
 | |
| var MAX_MEM_LEVEL = 9;
 | |
| /* Maximum value for memLevel in deflateInit2 */
 | |
| var MAX_WBITS = 15;
 | |
| /* 32K LZ77 window */
 | |
| var DEF_MEM_LEVEL = 8;
 | |
| 
 | |
| 
 | |
| var LENGTH_CODES  = 29;
 | |
| /* number of length codes, not counting the special END_BLOCK code */
 | |
| var LITERALS      = 256;
 | |
| /* number of literal bytes 0..255 */
 | |
| var L_CODES       = LITERALS + 1 + LENGTH_CODES;
 | |
| /* number of Literal or Length codes, including the END_BLOCK code */
 | |
| var D_CODES       = 30;
 | |
| /* number of distance codes */
 | |
| var BL_CODES      = 19;
 | |
| /* number of codes used to transfer the bit lengths */
 | |
| var HEAP_SIZE     = 2 * L_CODES + 1;
 | |
| /* maximum heap size */
 | |
| var MAX_BITS  = 15;
 | |
| /* All codes must not exceed MAX_BITS bits */
 | |
| 
 | |
| var MIN_MATCH = 3;
 | |
| var MAX_MATCH = 258;
 | |
| var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
 | |
| 
 | |
| var PRESET_DICT = 0x20;
 | |
| 
 | |
| var INIT_STATE = 42;
 | |
| var EXTRA_STATE = 69;
 | |
| var NAME_STATE = 73;
 | |
| var COMMENT_STATE = 91;
 | |
| var HCRC_STATE = 103;
 | |
| var BUSY_STATE = 113;
 | |
| var FINISH_STATE = 666;
 | |
| 
 | |
| var BS_NEED_MORE      = 1; /* block not completed, need more input or more output */
 | |
| var BS_BLOCK_DONE     = 2; /* block flush performed */
 | |
| var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */
 | |
| var BS_FINISH_DONE    = 4; /* finish done, accept no more input or output */
 | |
| 
 | |
| var OS_CODE = 0x03; // Unix :) . Don't detect, use this default.
 | |
| 
 | |
| function err(strm, errorCode) {
 | |
|   strm.msg = msg[errorCode];
 | |
|   return errorCode;
 | |
| }
 | |
| 
 | |
| function rank(f) {
 | |
|   return ((f) << 1) - ((f) > 4 ? 9 : 0);
 | |
| }
 | |
| 
 | |
| function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
 | |
| 
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Flush as much pending output as possible. All deflate() output goes
 | |
|  * through this function so some applications may wish to modify it
 | |
|  * to avoid allocating a large strm->output buffer and copying into it.
 | |
|  * (See also read_buf()).
 | |
|  */
 | |
| function flush_pending(strm) {
 | |
|   var s = strm.state;
 | |
| 
 | |
|   //_tr_flush_bits(s);
 | |
|   var len = s.pending;
 | |
|   if (len > strm.avail_out) {
 | |
|     len = strm.avail_out;
 | |
|   }
 | |
|   if (len === 0) { return; }
 | |
| 
 | |
|   utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out);
 | |
|   strm.next_out += len;
 | |
|   s.pending_out += len;
 | |
|   strm.total_out += len;
 | |
|   strm.avail_out -= len;
 | |
|   s.pending -= len;
 | |
|   if (s.pending === 0) {
 | |
|     s.pending_out = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| function flush_block_only(s, last) {
 | |
|   trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last);
 | |
|   s.block_start = s.strstart;
 | |
|   flush_pending(s.strm);
 | |
| }
 | |
| 
 | |
| 
 | |
| function put_byte(s, b) {
 | |
|   s.pending_buf[s.pending++] = b;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 | |
|  * IN assertion: the stream state is correct and there is enough room in
 | |
|  * pending_buf.
 | |
|  */
 | |
| function putShortMSB(s, b) {
 | |
| //  put_byte(s, (Byte)(b >> 8));
 | |
| //  put_byte(s, (Byte)(b & 0xff));
 | |
|   s.pending_buf[s.pending++] = (b >>> 8) & 0xff;
 | |
|   s.pending_buf[s.pending++] = b & 0xff;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Read a new buffer from the current input stream, update the adler32
 | |
|  * and total number of bytes read.  All deflate() input goes through
 | |
|  * this function so some applications may wish to modify it to avoid
 | |
|  * allocating a large strm->input buffer and copying from it.
 | |
|  * (See also flush_pending()).
 | |
|  */
 | |
| function read_buf(strm, buf, start, size) {
 | |
|   var len = strm.avail_in;
 | |
| 
 | |
|   if (len > size) { len = size; }
 | |
|   if (len === 0) { return 0; }
 | |
| 
 | |
|   strm.avail_in -= len;
 | |
| 
 | |
|   // zmemcpy(buf, strm->next_in, len);
 | |
|   utils.arraySet(buf, strm.input, strm.next_in, len, start);
 | |
|   if (strm.state.wrap === 1) {
 | |
|     strm.adler = adler32(strm.adler, buf, len, start);
 | |
|   }
 | |
| 
 | |
|   else if (strm.state.wrap === 2) {
 | |
|     strm.adler = crc32(strm.adler, buf, len, start);
 | |
|   }
 | |
| 
 | |
|   strm.next_in += len;
 | |
|   strm.total_in += len;
 | |
| 
 | |
|   return len;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Set match_start to the longest match starting at the given string and
 | |
|  * return its length. Matches shorter or equal to prev_length are discarded,
 | |
|  * in which case the result is equal to prev_length and match_start is
 | |
|  * garbage.
 | |
|  * IN assertions: cur_match is the head of the hash chain for the current
 | |
|  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 | |
|  * OUT assertion: the match length is not greater than s->lookahead.
 | |
|  */
 | |
| function longest_match(s, cur_match) {
 | |
|   var chain_length = s.max_chain_length;      /* max hash chain length */
 | |
|   var scan = s.strstart; /* current string */
 | |
|   var match;                       /* matched string */
 | |
|   var len;                           /* length of current match */
 | |
|   var best_len = s.prev_length;              /* best match length so far */
 | |
|   var nice_match = s.nice_match;             /* stop if match long enough */
 | |
|   var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ?
 | |
|       s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/;
 | |
| 
 | |
|   var _win = s.window; // shortcut
 | |
| 
 | |
|   var wmask = s.w_mask;
 | |
|   var prev  = s.prev;
 | |
| 
 | |
|   /* Stop when cur_match becomes <= limit. To simplify the code,
 | |
|    * we prevent matches with the string of window index 0.
 | |
|    */
 | |
| 
 | |
|   var strend = s.strstart + MAX_MATCH;
 | |
|   var scan_end1  = _win[scan + best_len - 1];
 | |
|   var scan_end   = _win[scan + best_len];
 | |
| 
 | |
|   /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 | |
|    * It is easy to get rid of this optimization if necessary.
 | |
|    */
 | |
|   // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 | |
| 
 | |
|   /* Do not waste too much time if we already have a good match: */
 | |
|   if (s.prev_length >= s.good_match) {
 | |
|     chain_length >>= 2;
 | |
|   }
 | |
|   /* Do not look for matches beyond the end of the input. This is necessary
 | |
|    * to make deflate deterministic.
 | |
|    */
 | |
|   if (nice_match > s.lookahead) { nice_match = s.lookahead; }
 | |
| 
 | |
|   // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 | |
| 
 | |
|   do {
 | |
|     // Assert(cur_match < s->strstart, "no future");
 | |
|     match = cur_match;
 | |
| 
 | |
|     /* Skip to next match if the match length cannot increase
 | |
|      * or if the match length is less than 2.  Note that the checks below
 | |
|      * for insufficient lookahead only occur occasionally for performance
 | |
|      * reasons.  Therefore uninitialized memory will be accessed, and
 | |
|      * conditional jumps will be made that depend on those values.
 | |
|      * However the length of the match is limited to the lookahead, so
 | |
|      * the output of deflate is not affected by the uninitialized values.
 | |
|      */
 | |
| 
 | |
|     if (_win[match + best_len]     !== scan_end  ||
 | |
|         _win[match + best_len - 1] !== scan_end1 ||
 | |
|         _win[match]                !== _win[scan] ||
 | |
|         _win[++match]              !== _win[scan + 1]) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* The check at best_len-1 can be removed because it will be made
 | |
|      * again later. (This heuristic is not always a win.)
 | |
|      * It is not necessary to compare scan[2] and match[2] since they
 | |
|      * are always equal when the other bytes match, given that
 | |
|      * the hash keys are equal and that HASH_BITS >= 8.
 | |
|      */
 | |
|     scan += 2;
 | |
|     match++;
 | |
|     // Assert(*scan == *match, "match[2]?");
 | |
| 
 | |
|     /* We check for insufficient lookahead only every 8th comparison;
 | |
|      * the 256th check will be made at strstart+258.
 | |
|      */
 | |
|     do {
 | |
|       /*jshint noempty:false*/
 | |
|     } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | |
|              _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | |
|              _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | |
|              _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | |
|              scan < strend);
 | |
| 
 | |
|     // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 | |
| 
 | |
|     len = MAX_MATCH - (strend - scan);
 | |
|     scan = strend - MAX_MATCH;
 | |
| 
 | |
|     if (len > best_len) {
 | |
|       s.match_start = cur_match;
 | |
|       best_len = len;
 | |
|       if (len >= nice_match) {
 | |
|         break;
 | |
|       }
 | |
|       scan_end1  = _win[scan + best_len - 1];
 | |
|       scan_end   = _win[scan + best_len];
 | |
|     }
 | |
|   } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0);
 | |
| 
 | |
|   if (best_len <= s.lookahead) {
 | |
|     return best_len;
 | |
|   }
 | |
|   return s.lookahead;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Fill the window when the lookahead becomes insufficient.
 | |
|  * Updates strstart and lookahead.
 | |
|  *
 | |
|  * IN assertion: lookahead < MIN_LOOKAHEAD
 | |
|  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 | |
|  *    At least one byte has been read, or avail_in == 0; reads are
 | |
|  *    performed for at least two bytes (required for the zip translate_eol
 | |
|  *    option -- not supported here).
 | |
|  */
 | |
| function fill_window(s) {
 | |
|   var _w_size = s.w_size;
 | |
|   var p, n, m, more, str;
 | |
| 
 | |
|   //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
 | |
| 
 | |
|   do {
 | |
|     more = s.window_size - s.lookahead - s.strstart;
 | |
| 
 | |
|     // JS ints have 32 bit, block below not needed
 | |
|     /* Deal with !@#$% 64K limit: */
 | |
|     //if (sizeof(int) <= 2) {
 | |
|     //    if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
 | |
|     //        more = wsize;
 | |
|     //
 | |
|     //  } else if (more == (unsigned)(-1)) {
 | |
|     //        /* Very unlikely, but possible on 16 bit machine if
 | |
|     //         * strstart == 0 && lookahead == 1 (input done a byte at time)
 | |
|     //         */
 | |
|     //        more--;
 | |
|     //    }
 | |
|     //}
 | |
| 
 | |
| 
 | |
|     /* If the window is almost full and there is insufficient lookahead,
 | |
|      * move the upper half to the lower one to make room in the upper half.
 | |
|      */
 | |
|     if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) {
 | |
| 
 | |
|       utils.arraySet(s.window, s.window, _w_size, _w_size, 0);
 | |
|       s.match_start -= _w_size;
 | |
|       s.strstart -= _w_size;
 | |
|       /* we now have strstart >= MAX_DIST */
 | |
|       s.block_start -= _w_size;
 | |
| 
 | |
|       /* Slide the hash table (could be avoided with 32 bit values
 | |
|        at the expense of memory usage). We slide even when level == 0
 | |
|        to keep the hash table consistent if we switch back to level > 0
 | |
|        later. (Using level 0 permanently is not an optimal usage of
 | |
|        zlib, so we don't care about this pathological case.)
 | |
|        */
 | |
| 
 | |
|       n = s.hash_size;
 | |
|       p = n;
 | |
|       do {
 | |
|         m = s.head[--p];
 | |
|         s.head[p] = (m >= _w_size ? m - _w_size : 0);
 | |
|       } while (--n);
 | |
| 
 | |
|       n = _w_size;
 | |
|       p = n;
 | |
|       do {
 | |
|         m = s.prev[--p];
 | |
|         s.prev[p] = (m >= _w_size ? m - _w_size : 0);
 | |
|         /* If n is not on any hash chain, prev[n] is garbage but
 | |
|          * its value will never be used.
 | |
|          */
 | |
|       } while (--n);
 | |
| 
 | |
|       more += _w_size;
 | |
|     }
 | |
|     if (s.strm.avail_in === 0) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* If there was no sliding:
 | |
|      *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
 | |
|      *    more == window_size - lookahead - strstart
 | |
|      * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
 | |
|      * => more >= window_size - 2*WSIZE + 2
 | |
|      * In the BIG_MEM or MMAP case (not yet supported),
 | |
|      *   window_size == input_size + MIN_LOOKAHEAD  &&
 | |
|      *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
 | |
|      * Otherwise, window_size == 2*WSIZE so more >= 2.
 | |
|      * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 | |
|      */
 | |
|     //Assert(more >= 2, "more < 2");
 | |
|     n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more);
 | |
|     s.lookahead += n;
 | |
| 
 | |
|     /* Initialize the hash value now that we have some input: */
 | |
|     if (s.lookahead + s.insert >= MIN_MATCH) {
 | |
|       str = s.strstart - s.insert;
 | |
|       s.ins_h = s.window[str];
 | |
| 
 | |
|       /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */
 | |
|       s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask;
 | |
| //#if MIN_MATCH != 3
 | |
| //        Call update_hash() MIN_MATCH-3 more times
 | |
| //#endif
 | |
|       while (s.insert) {
 | |
|         /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
 | |
|         s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;
 | |
| 
 | |
|         s.prev[str & s.w_mask] = s.head[s.ins_h];
 | |
|         s.head[s.ins_h] = str;
 | |
|         str++;
 | |
|         s.insert--;
 | |
|         if (s.lookahead + s.insert < MIN_MATCH) {
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 | |
|      * but this is not important since only literal bytes will be emitted.
 | |
|      */
 | |
| 
 | |
|   } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0);
 | |
| 
 | |
|   /* If the WIN_INIT bytes after the end of the current data have never been
 | |
|    * written, then zero those bytes in order to avoid memory check reports of
 | |
|    * the use of uninitialized (or uninitialised as Julian writes) bytes by
 | |
|    * the longest match routines.  Update the high water mark for the next
 | |
|    * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
 | |
|    * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
 | |
|    */
 | |
| //  if (s.high_water < s.window_size) {
 | |
| //    var curr = s.strstart + s.lookahead;
 | |
| //    var init = 0;
 | |
| //
 | |
| //    if (s.high_water < curr) {
 | |
| //      /* Previous high water mark below current data -- zero WIN_INIT
 | |
| //       * bytes or up to end of window, whichever is less.
 | |
| //       */
 | |
| //      init = s.window_size - curr;
 | |
| //      if (init > WIN_INIT)
 | |
| //        init = WIN_INIT;
 | |
| //      zmemzero(s->window + curr, (unsigned)init);
 | |
| //      s->high_water = curr + init;
 | |
| //    }
 | |
| //    else if (s->high_water < (ulg)curr + WIN_INIT) {
 | |
| //      /* High water mark at or above current data, but below current data
 | |
| //       * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
 | |
| //       * to end of window, whichever is less.
 | |
| //       */
 | |
| //      init = (ulg)curr + WIN_INIT - s->high_water;
 | |
| //      if (init > s->window_size - s->high_water)
 | |
| //        init = s->window_size - s->high_water;
 | |
| //      zmemzero(s->window + s->high_water, (unsigned)init);
 | |
| //      s->high_water += init;
 | |
| //    }
 | |
| //  }
 | |
| //
 | |
| //  Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
 | |
| //    "not enough room for search");
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Copy without compression as much as possible from the input stream, return
 | |
|  * the current block state.
 | |
|  * This function does not insert new strings in the dictionary since
 | |
|  * uncompressible data is probably not useful. This function is used
 | |
|  * only for the level=0 compression option.
 | |
|  * NOTE: this function should be optimized to avoid extra copying from
 | |
|  * window to pending_buf.
 | |
|  */
 | |
| function deflate_stored(s, flush) {
 | |
|   /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
 | |
|    * to pending_buf_size, and each stored block has a 5 byte header:
 | |
|    */
 | |
|   var max_block_size = 0xffff;
 | |
| 
 | |
|   if (max_block_size > s.pending_buf_size - 5) {
 | |
|     max_block_size = s.pending_buf_size - 5;
 | |
|   }
 | |
| 
 | |
|   /* Copy as much as possible from input to output: */
 | |
|   for (;;) {
 | |
|     /* Fill the window as much as possible: */
 | |
|     if (s.lookahead <= 1) {
 | |
| 
 | |
|       //Assert(s->strstart < s->w_size+MAX_DIST(s) ||
 | |
|       //  s->block_start >= (long)s->w_size, "slide too late");
 | |
| //      if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) ||
 | |
| //        s.block_start >= s.w_size)) {
 | |
| //        throw  new Error("slide too late");
 | |
| //      }
 | |
| 
 | |
|       fill_window(s);
 | |
|       if (s.lookahead === 0 && flush === Z_NO_FLUSH) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
| 
 | |
|       if (s.lookahead === 0) {
 | |
|         break;
 | |
|       }
 | |
|       /* flush the current block */
 | |
|     }
 | |
|     //Assert(s->block_start >= 0L, "block gone");
 | |
| //    if (s.block_start < 0) throw new Error("block gone");
 | |
| 
 | |
|     s.strstart += s.lookahead;
 | |
|     s.lookahead = 0;
 | |
| 
 | |
|     /* Emit a stored block if pending_buf will be full: */
 | |
|     var max_start = s.block_start + max_block_size;
 | |
| 
 | |
|     if (s.strstart === 0 || s.strstart >= max_start) {
 | |
|       /* strstart == 0 is possible when wraparound on 16-bit machine */
 | |
|       s.lookahead = s.strstart - max_start;
 | |
|       s.strstart = max_start;
 | |
|       /*** FLUSH_BLOCK(s, 0); ***/
 | |
|       flush_block_only(s, false);
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       /***/
 | |
| 
 | |
| 
 | |
|     }
 | |
|     /* Flush if we may have to slide, otherwise block_start may become
 | |
|      * negative and the data will be gone:
 | |
|      */
 | |
|     if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) {
 | |
|       /*** FLUSH_BLOCK(s, 0); ***/
 | |
|       flush_block_only(s, false);
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       /***/
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   s.insert = 0;
 | |
| 
 | |
|   if (flush === Z_FINISH) {
 | |
|     /*** FLUSH_BLOCK(s, 1); ***/
 | |
|     flush_block_only(s, true);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_FINISH_STARTED;
 | |
|     }
 | |
|     /***/
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
| 
 | |
|   if (s.strstart > s.block_start) {
 | |
|     /*** FLUSH_BLOCK(s, 0); ***/
 | |
|     flush_block_only(s, false);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_NEED_MORE;
 | |
|     }
 | |
|     /***/
 | |
|   }
 | |
| 
 | |
|   return BS_NEED_MORE;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Compress as much as possible from the input stream, return the current
 | |
|  * block state.
 | |
|  * This function does not perform lazy evaluation of matches and inserts
 | |
|  * new strings in the dictionary only for unmatched strings or for short
 | |
|  * matches. It is used only for the fast compression options.
 | |
|  */
 | |
| function deflate_fast(s, flush) {
 | |
|   var hash_head;        /* head of the hash chain */
 | |
|   var bflush;           /* set if current block must be flushed */
 | |
| 
 | |
|   for (;;) {
 | |
|     /* Make sure that we always have enough lookahead, except
 | |
|      * at the end of the input file. We need MAX_MATCH bytes
 | |
|      * for the next match, plus MIN_MATCH bytes to insert the
 | |
|      * string following the next match.
 | |
|      */
 | |
|     if (s.lookahead < MIN_LOOKAHEAD) {
 | |
|       fill_window(s);
 | |
|       if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       if (s.lookahead === 0) {
 | |
|         break; /* flush the current block */
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Insert the string window[strstart .. strstart+2] in the
 | |
|      * dictionary, and set hash_head to the head of the hash chain:
 | |
|      */
 | |
|     hash_head = 0/*NIL*/;
 | |
|     if (s.lookahead >= MIN_MATCH) {
 | |
|       /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | |
|       s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
 | |
|       hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | |
|       s.head[s.ins_h] = s.strstart;
 | |
|       /***/
 | |
|     }
 | |
| 
 | |
|     /* Find the longest match, discarding those <= prev_length.
 | |
|      * At this point we have always match_length < MIN_MATCH
 | |
|      */
 | |
|     if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) {
 | |
|       /* To simplify the code, we prevent matches with the string
 | |
|        * of window index 0 (in particular we have to avoid a match
 | |
|        * of the string with itself at the start of the input file).
 | |
|        */
 | |
|       s.match_length = longest_match(s, hash_head);
 | |
|       /* longest_match() sets match_start */
 | |
|     }
 | |
|     if (s.match_length >= MIN_MATCH) {
 | |
|       // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only
 | |
| 
 | |
|       /*** _tr_tally_dist(s, s.strstart - s.match_start,
 | |
|                      s.match_length - MIN_MATCH, bflush); ***/
 | |
|       bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH);
 | |
| 
 | |
|       s.lookahead -= s.match_length;
 | |
| 
 | |
|       /* Insert new strings in the hash table only if the match length
 | |
|        * is not too large. This saves time but degrades compression.
 | |
|        */
 | |
|       if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) {
 | |
|         s.match_length--; /* string at strstart already in table */
 | |
|         do {
 | |
|           s.strstart++;
 | |
|           /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | |
|           s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
 | |
|           hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | |
|           s.head[s.ins_h] = s.strstart;
 | |
|           /***/
 | |
|           /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 | |
|            * always MIN_MATCH bytes ahead.
 | |
|            */
 | |
|         } while (--s.match_length !== 0);
 | |
|         s.strstart++;
 | |
|       } else
 | |
|       {
 | |
|         s.strstart += s.match_length;
 | |
|         s.match_length = 0;
 | |
|         s.ins_h = s.window[s.strstart];
 | |
|         /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */
 | |
|         s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask;
 | |
| 
 | |
| //#if MIN_MATCH != 3
 | |
| //                Call UPDATE_HASH() MIN_MATCH-3 more times
 | |
| //#endif
 | |
|         /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 | |
|          * matter since it will be recomputed at next deflate call.
 | |
|          */
 | |
|       }
 | |
|     } else {
 | |
|       /* No match, output a literal byte */
 | |
|       //Tracevv((stderr,"%c", s.window[s.strstart]));
 | |
|       /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
 | |
|       bflush = trees._tr_tally(s, 0, s.window[s.strstart]);
 | |
| 
 | |
|       s.lookahead--;
 | |
|       s.strstart++;
 | |
|     }
 | |
|     if (bflush) {
 | |
|       /*** FLUSH_BLOCK(s, 0); ***/
 | |
|       flush_block_only(s, false);
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       /***/
 | |
|     }
 | |
|   }
 | |
|   s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1);
 | |
|   if (flush === Z_FINISH) {
 | |
|     /*** FLUSH_BLOCK(s, 1); ***/
 | |
|     flush_block_only(s, true);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_FINISH_STARTED;
 | |
|     }
 | |
|     /***/
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
|   if (s.last_lit) {
 | |
|     /*** FLUSH_BLOCK(s, 0); ***/
 | |
|     flush_block_only(s, false);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_NEED_MORE;
 | |
|     }
 | |
|     /***/
 | |
|   }
 | |
|   return BS_BLOCK_DONE;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Same as above, but achieves better compression. We use a lazy
 | |
|  * evaluation for matches: a match is finally adopted only if there is
 | |
|  * no better match at the next window position.
 | |
|  */
 | |
| function deflate_slow(s, flush) {
 | |
|   var hash_head;          /* head of hash chain */
 | |
|   var bflush;              /* set if current block must be flushed */
 | |
| 
 | |
|   var max_insert;
 | |
| 
 | |
|   /* Process the input block. */
 | |
|   for (;;) {
 | |
|     /* Make sure that we always have enough lookahead, except
 | |
|      * at the end of the input file. We need MAX_MATCH bytes
 | |
|      * for the next match, plus MIN_MATCH bytes to insert the
 | |
|      * string following the next match.
 | |
|      */
 | |
|     if (s.lookahead < MIN_LOOKAHEAD) {
 | |
|       fill_window(s);
 | |
|       if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       if (s.lookahead === 0) { break; } /* flush the current block */
 | |
|     }
 | |
| 
 | |
|     /* Insert the string window[strstart .. strstart+2] in the
 | |
|      * dictionary, and set hash_head to the head of the hash chain:
 | |
|      */
 | |
|     hash_head = 0/*NIL*/;
 | |
|     if (s.lookahead >= MIN_MATCH) {
 | |
|       /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | |
|       s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
 | |
|       hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | |
|       s.head[s.ins_h] = s.strstart;
 | |
|       /***/
 | |
|     }
 | |
| 
 | |
|     /* Find the longest match, discarding those <= prev_length.
 | |
|      */
 | |
|     s.prev_length = s.match_length;
 | |
|     s.prev_match = s.match_start;
 | |
|     s.match_length = MIN_MATCH - 1;
 | |
| 
 | |
|     if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match &&
 | |
|         s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) {
 | |
|       /* To simplify the code, we prevent matches with the string
 | |
|        * of window index 0 (in particular we have to avoid a match
 | |
|        * of the string with itself at the start of the input file).
 | |
|        */
 | |
|       s.match_length = longest_match(s, hash_head);
 | |
|       /* longest_match() sets match_start */
 | |
| 
 | |
|       if (s.match_length <= 5 &&
 | |
|          (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) {
 | |
| 
 | |
|         /* If prev_match is also MIN_MATCH, match_start is garbage
 | |
|          * but we will ignore the current match anyway.
 | |
|          */
 | |
|         s.match_length = MIN_MATCH - 1;
 | |
|       }
 | |
|     }
 | |
|     /* If there was a match at the previous step and the current
 | |
|      * match is not better, output the previous match:
 | |
|      */
 | |
|     if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) {
 | |
|       max_insert = s.strstart + s.lookahead - MIN_MATCH;
 | |
|       /* Do not insert strings in hash table beyond this. */
 | |
| 
 | |
|       //check_match(s, s.strstart-1, s.prev_match, s.prev_length);
 | |
| 
 | |
|       /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match,
 | |
|                      s.prev_length - MIN_MATCH, bflush);***/
 | |
|       bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH);
 | |
|       /* Insert in hash table all strings up to the end of the match.
 | |
|        * strstart-1 and strstart are already inserted. If there is not
 | |
|        * enough lookahead, the last two strings are not inserted in
 | |
|        * the hash table.
 | |
|        */
 | |
|       s.lookahead -= s.prev_length - 1;
 | |
|       s.prev_length -= 2;
 | |
|       do {
 | |
|         if (++s.strstart <= max_insert) {
 | |
|           /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | |
|           s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
 | |
|           hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | |
|           s.head[s.ins_h] = s.strstart;
 | |
|           /***/
 | |
|         }
 | |
|       } while (--s.prev_length !== 0);
 | |
|       s.match_available = 0;
 | |
|       s.match_length = MIN_MATCH - 1;
 | |
|       s.strstart++;
 | |
| 
 | |
|       if (bflush) {
 | |
|         /*** FLUSH_BLOCK(s, 0); ***/
 | |
|         flush_block_only(s, false);
 | |
|         if (s.strm.avail_out === 0) {
 | |
|           return BS_NEED_MORE;
 | |
|         }
 | |
|         /***/
 | |
|       }
 | |
| 
 | |
|     } else if (s.match_available) {
 | |
|       /* If there was no match at the previous position, output a
 | |
|        * single literal. If there was a match but the current match
 | |
|        * is longer, truncate the previous match to a single literal.
 | |
|        */
 | |
|       //Tracevv((stderr,"%c", s->window[s->strstart-1]));
 | |
|       /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
 | |
|       bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);
 | |
| 
 | |
|       if (bflush) {
 | |
|         /*** FLUSH_BLOCK_ONLY(s, 0) ***/
 | |
|         flush_block_only(s, false);
 | |
|         /***/
 | |
|       }
 | |
|       s.strstart++;
 | |
|       s.lookahead--;
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|     } else {
 | |
|       /* There is no previous match to compare with, wait for
 | |
|        * the next step to decide.
 | |
|        */
 | |
|       s.match_available = 1;
 | |
|       s.strstart++;
 | |
|       s.lookahead--;
 | |
|     }
 | |
|   }
 | |
|   //Assert (flush != Z_NO_FLUSH, "no flush?");
 | |
|   if (s.match_available) {
 | |
|     //Tracevv((stderr,"%c", s->window[s->strstart-1]));
 | |
|     /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
 | |
|     bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);
 | |
| 
 | |
|     s.match_available = 0;
 | |
|   }
 | |
|   s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1;
 | |
|   if (flush === Z_FINISH) {
 | |
|     /*** FLUSH_BLOCK(s, 1); ***/
 | |
|     flush_block_only(s, true);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_FINISH_STARTED;
 | |
|     }
 | |
|     /***/
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
|   if (s.last_lit) {
 | |
|     /*** FLUSH_BLOCK(s, 0); ***/
 | |
|     flush_block_only(s, false);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_NEED_MORE;
 | |
|     }
 | |
|     /***/
 | |
|   }
 | |
| 
 | |
|   return BS_BLOCK_DONE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 | |
|  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 | |
|  * deflate switches away from Z_RLE.)
 | |
|  */
 | |
| function deflate_rle(s, flush) {
 | |
|   var bflush;            /* set if current block must be flushed */
 | |
|   var prev;              /* byte at distance one to match */
 | |
|   var scan, strend;      /* scan goes up to strend for length of run */
 | |
| 
 | |
|   var _win = s.window;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* Make sure that we always have enough lookahead, except
 | |
|      * at the end of the input file. We need MAX_MATCH bytes
 | |
|      * for the longest run, plus one for the unrolled loop.
 | |
|      */
 | |
|     if (s.lookahead <= MAX_MATCH) {
 | |
|       fill_window(s);
 | |
|       if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       if (s.lookahead === 0) { break; } /* flush the current block */
 | |
|     }
 | |
| 
 | |
|     /* See how many times the previous byte repeats */
 | |
|     s.match_length = 0;
 | |
|     if (s.lookahead >= MIN_MATCH && s.strstart > 0) {
 | |
|       scan = s.strstart - 1;
 | |
|       prev = _win[scan];
 | |
|       if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) {
 | |
|         strend = s.strstart + MAX_MATCH;
 | |
|         do {
 | |
|           /*jshint noempty:false*/
 | |
|         } while (prev === _win[++scan] && prev === _win[++scan] &&
 | |
|                  prev === _win[++scan] && prev === _win[++scan] &&
 | |
|                  prev === _win[++scan] && prev === _win[++scan] &&
 | |
|                  prev === _win[++scan] && prev === _win[++scan] &&
 | |
|                  scan < strend);
 | |
|         s.match_length = MAX_MATCH - (strend - scan);
 | |
|         if (s.match_length > s.lookahead) {
 | |
|           s.match_length = s.lookahead;
 | |
|         }
 | |
|       }
 | |
|       //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
 | |
|     }
 | |
| 
 | |
|     /* Emit match if have run of MIN_MATCH or longer, else emit literal */
 | |
|     if (s.match_length >= MIN_MATCH) {
 | |
|       //check_match(s, s.strstart, s.strstart - 1, s.match_length);
 | |
| 
 | |
|       /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/
 | |
|       bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH);
 | |
| 
 | |
|       s.lookahead -= s.match_length;
 | |
|       s.strstart += s.match_length;
 | |
|       s.match_length = 0;
 | |
|     } else {
 | |
|       /* No match, output a literal byte */
 | |
|       //Tracevv((stderr,"%c", s->window[s->strstart]));
 | |
|       /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
 | |
|       bflush = trees._tr_tally(s, 0, s.window[s.strstart]);
 | |
| 
 | |
|       s.lookahead--;
 | |
|       s.strstart++;
 | |
|     }
 | |
|     if (bflush) {
 | |
|       /*** FLUSH_BLOCK(s, 0); ***/
 | |
|       flush_block_only(s, false);
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       /***/
 | |
|     }
 | |
|   }
 | |
|   s.insert = 0;
 | |
|   if (flush === Z_FINISH) {
 | |
|     /*** FLUSH_BLOCK(s, 1); ***/
 | |
|     flush_block_only(s, true);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_FINISH_STARTED;
 | |
|     }
 | |
|     /***/
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
|   if (s.last_lit) {
 | |
|     /*** FLUSH_BLOCK(s, 0); ***/
 | |
|     flush_block_only(s, false);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_NEED_MORE;
 | |
|     }
 | |
|     /***/
 | |
|   }
 | |
|   return BS_BLOCK_DONE;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 | |
|  * (It will be regenerated if this run of deflate switches away from Huffman.)
 | |
|  */
 | |
| function deflate_huff(s, flush) {
 | |
|   var bflush;             /* set if current block must be flushed */
 | |
| 
 | |
|   for (;;) {
 | |
|     /* Make sure that we have a literal to write. */
 | |
|     if (s.lookahead === 0) {
 | |
|       fill_window(s);
 | |
|       if (s.lookahead === 0) {
 | |
|         if (flush === Z_NO_FLUSH) {
 | |
|           return BS_NEED_MORE;
 | |
|         }
 | |
|         break;      /* flush the current block */
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Output a literal byte */
 | |
|     s.match_length = 0;
 | |
|     //Tracevv((stderr,"%c", s->window[s->strstart]));
 | |
|     /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
 | |
|     bflush = trees._tr_tally(s, 0, s.window[s.strstart]);
 | |
|     s.lookahead--;
 | |
|     s.strstart++;
 | |
|     if (bflush) {
 | |
|       /*** FLUSH_BLOCK(s, 0); ***/
 | |
|       flush_block_only(s, false);
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       /***/
 | |
|     }
 | |
|   }
 | |
|   s.insert = 0;
 | |
|   if (flush === Z_FINISH) {
 | |
|     /*** FLUSH_BLOCK(s, 1); ***/
 | |
|     flush_block_only(s, true);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_FINISH_STARTED;
 | |
|     }
 | |
|     /***/
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
|   if (s.last_lit) {
 | |
|     /*** FLUSH_BLOCK(s, 0); ***/
 | |
|     flush_block_only(s, false);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_NEED_MORE;
 | |
|     }
 | |
|     /***/
 | |
|   }
 | |
|   return BS_BLOCK_DONE;
 | |
| }
 | |
| 
 | |
| /* Values for max_lazy_match, good_match and max_chain_length, depending on
 | |
|  * the desired pack level (0..9). The values given below have been tuned to
 | |
|  * exclude worst case performance for pathological files. Better values may be
 | |
|  * found for specific files.
 | |
|  */
 | |
| function Config(good_length, max_lazy, nice_length, max_chain, func) {
 | |
|   this.good_length = good_length;
 | |
|   this.max_lazy = max_lazy;
 | |
|   this.nice_length = nice_length;
 | |
|   this.max_chain = max_chain;
 | |
|   this.func = func;
 | |
| }
 | |
| 
 | |
| var configuration_table;
 | |
| 
 | |
| configuration_table = [
 | |
|   /*      good lazy nice chain */
 | |
|   new Config(0, 0, 0, 0, deflate_stored),          /* 0 store only */
 | |
|   new Config(4, 4, 8, 4, deflate_fast),            /* 1 max speed, no lazy matches */
 | |
|   new Config(4, 5, 16, 8, deflate_fast),           /* 2 */
 | |
|   new Config(4, 6, 32, 32, deflate_fast),          /* 3 */
 | |
| 
 | |
|   new Config(4, 4, 16, 16, deflate_slow),          /* 4 lazy matches */
 | |
|   new Config(8, 16, 32, 32, deflate_slow),         /* 5 */
 | |
|   new Config(8, 16, 128, 128, deflate_slow),       /* 6 */
 | |
|   new Config(8, 32, 128, 256, deflate_slow),       /* 7 */
 | |
|   new Config(32, 128, 258, 1024, deflate_slow),    /* 8 */
 | |
|   new Config(32, 258, 258, 4096, deflate_slow)     /* 9 max compression */
 | |
| ];
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the "longest match" routines for a new zlib stream
 | |
|  */
 | |
| function lm_init(s) {
 | |
|   s.window_size = 2 * s.w_size;
 | |
| 
 | |
|   /*** CLEAR_HASH(s); ***/
 | |
|   zero(s.head); // Fill with NIL (= 0);
 | |
| 
 | |
|   /* Set the default configuration parameters:
 | |
|    */
 | |
|   s.max_lazy_match = configuration_table[s.level].max_lazy;
 | |
|   s.good_match = configuration_table[s.level].good_length;
 | |
|   s.nice_match = configuration_table[s.level].nice_length;
 | |
|   s.max_chain_length = configuration_table[s.level].max_chain;
 | |
| 
 | |
|   s.strstart = 0;
 | |
|   s.block_start = 0;
 | |
|   s.lookahead = 0;
 | |
|   s.insert = 0;
 | |
|   s.match_length = s.prev_length = MIN_MATCH - 1;
 | |
|   s.match_available = 0;
 | |
|   s.ins_h = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| function DeflateState() {
 | |
|   this.strm = null;            /* pointer back to this zlib stream */
 | |
|   this.status = 0;            /* as the name implies */
 | |
|   this.pending_buf = null;      /* output still pending */
 | |
|   this.pending_buf_size = 0;  /* size of pending_buf */
 | |
|   this.pending_out = 0;       /* next pending byte to output to the stream */
 | |
|   this.pending = 0;           /* nb of bytes in the pending buffer */
 | |
|   this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip */
 | |
|   this.gzhead = null;         /* gzip header information to write */
 | |
|   this.gzindex = 0;           /* where in extra, name, or comment */
 | |
|   this.method = Z_DEFLATED; /* can only be DEFLATED */
 | |
|   this.last_flush = -1;   /* value of flush param for previous deflate call */
 | |
| 
 | |
|   this.w_size = 0;  /* LZ77 window size (32K by default) */
 | |
|   this.w_bits = 0;  /* log2(w_size)  (8..16) */
 | |
|   this.w_mask = 0;  /* w_size - 1 */
 | |
| 
 | |
|   this.window = null;
 | |
|   /* Sliding window. Input bytes are read into the second half of the window,
 | |
|    * and move to the first half later to keep a dictionary of at least wSize
 | |
|    * bytes. With this organization, matches are limited to a distance of
 | |
|    * wSize-MAX_MATCH bytes, but this ensures that IO is always
 | |
|    * performed with a length multiple of the block size.
 | |
|    */
 | |
| 
 | |
|   this.window_size = 0;
 | |
|   /* Actual size of window: 2*wSize, except when the user input buffer
 | |
|    * is directly used as sliding window.
 | |
|    */
 | |
| 
 | |
|   this.prev = null;
 | |
|   /* Link to older string with same hash index. To limit the size of this
 | |
|    * array to 64K, this link is maintained only for the last 32K strings.
 | |
|    * An index in this array is thus a window index modulo 32K.
 | |
|    */
 | |
| 
 | |
|   this.head = null;   /* Heads of the hash chains or NIL. */
 | |
| 
 | |
|   this.ins_h = 0;       /* hash index of string to be inserted */
 | |
|   this.hash_size = 0;   /* number of elements in hash table */
 | |
|   this.hash_bits = 0;   /* log2(hash_size) */
 | |
|   this.hash_mask = 0;   /* hash_size-1 */
 | |
| 
 | |
|   this.hash_shift = 0;
 | |
|   /* Number of bits by which ins_h must be shifted at each input
 | |
|    * step. It must be such that after MIN_MATCH steps, the oldest
 | |
|    * byte no longer takes part in the hash key, that is:
 | |
|    *   hash_shift * MIN_MATCH >= hash_bits
 | |
|    */
 | |
| 
 | |
|   this.block_start = 0;
 | |
|   /* Window position at the beginning of the current output block. Gets
 | |
|    * negative when the window is moved backwards.
 | |
|    */
 | |
| 
 | |
|   this.match_length = 0;      /* length of best match */
 | |
|   this.prev_match = 0;        /* previous match */
 | |
|   this.match_available = 0;   /* set if previous match exists */
 | |
|   this.strstart = 0;          /* start of string to insert */
 | |
|   this.match_start = 0;       /* start of matching string */
 | |
|   this.lookahead = 0;         /* number of valid bytes ahead in window */
 | |
| 
 | |
|   this.prev_length = 0;
 | |
|   /* Length of the best match at previous step. Matches not greater than this
 | |
|    * are discarded. This is used in the lazy match evaluation.
 | |
|    */
 | |
| 
 | |
|   this.max_chain_length = 0;
 | |
|   /* To speed up deflation, hash chains are never searched beyond this
 | |
|    * length.  A higher limit improves compression ratio but degrades the
 | |
|    * speed.
 | |
|    */
 | |
| 
 | |
|   this.max_lazy_match = 0;
 | |
|   /* Attempt to find a better match only when the current match is strictly
 | |
|    * smaller than this value. This mechanism is used only for compression
 | |
|    * levels >= 4.
 | |
|    */
 | |
|   // That's alias to max_lazy_match, don't use directly
 | |
|   //this.max_insert_length = 0;
 | |
|   /* Insert new strings in the hash table only if the match length is not
 | |
|    * greater than this length. This saves time but degrades compression.
 | |
|    * max_insert_length is used only for compression levels <= 3.
 | |
|    */
 | |
| 
 | |
|   this.level = 0;     /* compression level (1..9) */
 | |
|   this.strategy = 0;  /* favor or force Huffman coding*/
 | |
| 
 | |
|   this.good_match = 0;
 | |
|   /* Use a faster search when the previous match is longer than this */
 | |
| 
 | |
|   this.nice_match = 0; /* Stop searching when current match exceeds this */
 | |
| 
 | |
|               /* used by trees.c: */
 | |
| 
 | |
|   /* Didn't use ct_data typedef below to suppress compiler warning */
 | |
| 
 | |
|   // struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
 | |
|   // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
 | |
|   // struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
 | |
| 
 | |
|   // Use flat array of DOUBLE size, with interleaved fata,
 | |
|   // because JS does not support effective
 | |
|   this.dyn_ltree  = new utils.Buf16(HEAP_SIZE * 2);
 | |
|   this.dyn_dtree  = new utils.Buf16((2 * D_CODES + 1) * 2);
 | |
|   this.bl_tree    = new utils.Buf16((2 * BL_CODES + 1) * 2);
 | |
|   zero(this.dyn_ltree);
 | |
|   zero(this.dyn_dtree);
 | |
|   zero(this.bl_tree);
 | |
| 
 | |
|   this.l_desc   = null;         /* desc. for literal tree */
 | |
|   this.d_desc   = null;         /* desc. for distance tree */
 | |
|   this.bl_desc  = null;         /* desc. for bit length tree */
 | |
| 
 | |
|   //ush bl_count[MAX_BITS+1];
 | |
|   this.bl_count = new utils.Buf16(MAX_BITS + 1);
 | |
|   /* number of codes at each bit length for an optimal tree */
 | |
| 
 | |
|   //int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
 | |
|   this.heap = new utils.Buf16(2 * L_CODES + 1);  /* heap used to build the Huffman trees */
 | |
|   zero(this.heap);
 | |
| 
 | |
|   this.heap_len = 0;               /* number of elements in the heap */
 | |
|   this.heap_max = 0;               /* element of largest frequency */
 | |
|   /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 | |
|    * The same heap array is used to build all trees.
 | |
|    */
 | |
| 
 | |
|   this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1];
 | |
|   zero(this.depth);
 | |
|   /* Depth of each subtree used as tie breaker for trees of equal frequency
 | |
|    */
 | |
| 
 | |
|   this.l_buf = 0;          /* buffer index for literals or lengths */
 | |
| 
 | |
|   this.lit_bufsize = 0;
 | |
|   /* Size of match buffer for literals/lengths.  There are 4 reasons for
 | |
|    * limiting lit_bufsize to 64K:
 | |
|    *   - frequencies can be kept in 16 bit counters
 | |
|    *   - if compression is not successful for the first block, all input
 | |
|    *     data is still in the window so we can still emit a stored block even
 | |
|    *     when input comes from standard input.  (This can also be done for
 | |
|    *     all blocks if lit_bufsize is not greater than 32K.)
 | |
|    *   - if compression is not successful for a file smaller than 64K, we can
 | |
|    *     even emit a stored file instead of a stored block (saving 5 bytes).
 | |
|    *     This is applicable only for zip (not gzip or zlib).
 | |
|    *   - creating new Huffman trees less frequently may not provide fast
 | |
|    *     adaptation to changes in the input data statistics. (Take for
 | |
|    *     example a binary file with poorly compressible code followed by
 | |
|    *     a highly compressible string table.) Smaller buffer sizes give
 | |
|    *     fast adaptation but have of course the overhead of transmitting
 | |
|    *     trees more frequently.
 | |
|    *   - I can't count above 4
 | |
|    */
 | |
| 
 | |
|   this.last_lit = 0;      /* running index in l_buf */
 | |
| 
 | |
|   this.d_buf = 0;
 | |
|   /* Buffer index for distances. To simplify the code, d_buf and l_buf have
 | |
|    * the same number of elements. To use different lengths, an extra flag
 | |
|    * array would be necessary.
 | |
|    */
 | |
| 
 | |
|   this.opt_len = 0;       /* bit length of current block with optimal trees */
 | |
|   this.static_len = 0;    /* bit length of current block with static trees */
 | |
|   this.matches = 0;       /* number of string matches in current block */
 | |
|   this.insert = 0;        /* bytes at end of window left to insert */
 | |
| 
 | |
| 
 | |
|   this.bi_buf = 0;
 | |
|   /* Output buffer. bits are inserted starting at the bottom (least
 | |
|    * significant bits).
 | |
|    */
 | |
|   this.bi_valid = 0;
 | |
|   /* Number of valid bits in bi_buf.  All bits above the last valid bit
 | |
|    * are always zero.
 | |
|    */
 | |
| 
 | |
|   // Used for window memory init. We safely ignore it for JS. That makes
 | |
|   // sense only for pointers and memory check tools.
 | |
|   //this.high_water = 0;
 | |
|   /* High water mark offset in window for initialized bytes -- bytes above
 | |
|    * this are set to zero in order to avoid memory check warnings when
 | |
|    * longest match routines access bytes past the input.  This is then
 | |
|    * updated to the new high water mark.
 | |
|    */
 | |
| }
 | |
| 
 | |
| 
 | |
| function deflateResetKeep(strm) {
 | |
|   var s;
 | |
| 
 | |
|   if (!strm || !strm.state) {
 | |
|     return err(strm, Z_STREAM_ERROR);
 | |
|   }
 | |
| 
 | |
|   strm.total_in = strm.total_out = 0;
 | |
|   strm.data_type = Z_UNKNOWN;
 | |
| 
 | |
|   s = strm.state;
 | |
|   s.pending = 0;
 | |
|   s.pending_out = 0;
 | |
| 
 | |
|   if (s.wrap < 0) {
 | |
|     s.wrap = -s.wrap;
 | |
|     /* was made negative by deflate(..., Z_FINISH); */
 | |
|   }
 | |
|   s.status = (s.wrap ? INIT_STATE : BUSY_STATE);
 | |
|   strm.adler = (s.wrap === 2) ?
 | |
|     0  // crc32(0, Z_NULL, 0)
 | |
|   :
 | |
|     1; // adler32(0, Z_NULL, 0)
 | |
|   s.last_flush = Z_NO_FLUSH;
 | |
|   trees._tr_init(s);
 | |
|   return Z_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| function deflateReset(strm) {
 | |
|   var ret = deflateResetKeep(strm);
 | |
|   if (ret === Z_OK) {
 | |
|     lm_init(strm.state);
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| function deflateSetHeader(strm, head) {
 | |
|   if (!strm || !strm.state) { return Z_STREAM_ERROR; }
 | |
|   if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; }
 | |
|   strm.state.gzhead = head;
 | |
|   return Z_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| function deflateInit2(strm, level, method, windowBits, memLevel, strategy) {
 | |
|   if (!strm) { // === Z_NULL
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
|   var wrap = 1;
 | |
| 
 | |
|   if (level === Z_DEFAULT_COMPRESSION) {
 | |
|     level = 6;
 | |
|   }
 | |
| 
 | |
|   if (windowBits < 0) { /* suppress zlib wrapper */
 | |
|     wrap = 0;
 | |
|     windowBits = -windowBits;
 | |
|   }
 | |
| 
 | |
|   else if (windowBits > 15) {
 | |
|     wrap = 2;           /* write gzip wrapper instead */
 | |
|     windowBits -= 16;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED ||
 | |
|     windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
 | |
|     strategy < 0 || strategy > Z_FIXED) {
 | |
|     return err(strm, Z_STREAM_ERROR);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (windowBits === 8) {
 | |
|     windowBits = 9;
 | |
|   }
 | |
|   /* until 256-byte window bug fixed */
 | |
| 
 | |
|   var s = new DeflateState();
 | |
| 
 | |
|   strm.state = s;
 | |
|   s.strm = strm;
 | |
| 
 | |
|   s.wrap = wrap;
 | |
|   s.gzhead = null;
 | |
|   s.w_bits = windowBits;
 | |
|   s.w_size = 1 << s.w_bits;
 | |
|   s.w_mask = s.w_size - 1;
 | |
| 
 | |
|   s.hash_bits = memLevel + 7;
 | |
|   s.hash_size = 1 << s.hash_bits;
 | |
|   s.hash_mask = s.hash_size - 1;
 | |
|   s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH);
 | |
| 
 | |
|   s.window = new utils.Buf8(s.w_size * 2);
 | |
|   s.head = new utils.Buf16(s.hash_size);
 | |
|   s.prev = new utils.Buf16(s.w_size);
 | |
| 
 | |
|   // Don't need mem init magic for JS.
 | |
|   //s.high_water = 0;  /* nothing written to s->window yet */
 | |
| 
 | |
|   s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
 | |
| 
 | |
|   s.pending_buf_size = s.lit_bufsize * 4;
 | |
| 
 | |
|   //overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
 | |
|   //s->pending_buf = (uchf *) overlay;
 | |
|   s.pending_buf = new utils.Buf8(s.pending_buf_size);
 | |
| 
 | |
|   // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`)
 | |
|   //s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
 | |
|   s.d_buf = 1 * s.lit_bufsize;
 | |
| 
 | |
|   //s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
 | |
|   s.l_buf = (1 + 2) * s.lit_bufsize;
 | |
| 
 | |
|   s.level = level;
 | |
|   s.strategy = strategy;
 | |
|   s.method = method;
 | |
| 
 | |
|   return deflateReset(strm);
 | |
| }
 | |
| 
 | |
| function deflateInit(strm, level) {
 | |
|   return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY);
 | |
| }
 | |
| 
 | |
| 
 | |
| function deflate(strm, flush) {
 | |
|   var old_flush, s;
 | |
|   var beg, val; // for gzip header write only
 | |
| 
 | |
|   if (!strm || !strm.state ||
 | |
|     flush > Z_BLOCK || flush < 0) {
 | |
|     return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   s = strm.state;
 | |
| 
 | |
|   if (!strm.output ||
 | |
|       (!strm.input && strm.avail_in !== 0) ||
 | |
|       (s.status === FINISH_STATE && flush !== Z_FINISH)) {
 | |
|     return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR);
 | |
|   }
 | |
| 
 | |
|   s.strm = strm; /* just in case */
 | |
|   old_flush = s.last_flush;
 | |
|   s.last_flush = flush;
 | |
| 
 | |
|   /* Write the header */
 | |
|   if (s.status === INIT_STATE) {
 | |
| 
 | |
|     if (s.wrap === 2) { // GZIP header
 | |
|       strm.adler = 0;  //crc32(0L, Z_NULL, 0);
 | |
|       put_byte(s, 31);
 | |
|       put_byte(s, 139);
 | |
|       put_byte(s, 8);
 | |
|       if (!s.gzhead) { // s->gzhead == Z_NULL
 | |
|         put_byte(s, 0);
 | |
|         put_byte(s, 0);
 | |
|         put_byte(s, 0);
 | |
|         put_byte(s, 0);
 | |
|         put_byte(s, 0);
 | |
|         put_byte(s, s.level === 9 ? 2 :
 | |
|                     (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
 | |
|                      4 : 0));
 | |
|         put_byte(s, OS_CODE);
 | |
|         s.status = BUSY_STATE;
 | |
|       }
 | |
|       else {
 | |
|         put_byte(s, (s.gzhead.text ? 1 : 0) +
 | |
|                     (s.gzhead.hcrc ? 2 : 0) +
 | |
|                     (!s.gzhead.extra ? 0 : 4) +
 | |
|                     (!s.gzhead.name ? 0 : 8) +
 | |
|                     (!s.gzhead.comment ? 0 : 16)
 | |
|         );
 | |
|         put_byte(s, s.gzhead.time & 0xff);
 | |
|         put_byte(s, (s.gzhead.time >> 8) & 0xff);
 | |
|         put_byte(s, (s.gzhead.time >> 16) & 0xff);
 | |
|         put_byte(s, (s.gzhead.time >> 24) & 0xff);
 | |
|         put_byte(s, s.level === 9 ? 2 :
 | |
|                     (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
 | |
|                      4 : 0));
 | |
|         put_byte(s, s.gzhead.os & 0xff);
 | |
|         if (s.gzhead.extra && s.gzhead.extra.length) {
 | |
|           put_byte(s, s.gzhead.extra.length & 0xff);
 | |
|           put_byte(s, (s.gzhead.extra.length >> 8) & 0xff);
 | |
|         }
 | |
|         if (s.gzhead.hcrc) {
 | |
|           strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0);
 | |
|         }
 | |
|         s.gzindex = 0;
 | |
|         s.status = EXTRA_STATE;
 | |
|       }
 | |
|     }
 | |
|     else // DEFLATE header
 | |
|     {
 | |
|       var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8;
 | |
|       var level_flags = -1;
 | |
| 
 | |
|       if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) {
 | |
|         level_flags = 0;
 | |
|       } else if (s.level < 6) {
 | |
|         level_flags = 1;
 | |
|       } else if (s.level === 6) {
 | |
|         level_flags = 2;
 | |
|       } else {
 | |
|         level_flags = 3;
 | |
|       }
 | |
|       header |= (level_flags << 6);
 | |
|       if (s.strstart !== 0) { header |= PRESET_DICT; }
 | |
|       header += 31 - (header % 31);
 | |
| 
 | |
|       s.status = BUSY_STATE;
 | |
|       putShortMSB(s, header);
 | |
| 
 | |
|       /* Save the adler32 of the preset dictionary: */
 | |
|       if (s.strstart !== 0) {
 | |
|         putShortMSB(s, strm.adler >>> 16);
 | |
|         putShortMSB(s, strm.adler & 0xffff);
 | |
|       }
 | |
|       strm.adler = 1; // adler32(0L, Z_NULL, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| //#ifdef GZIP
 | |
|   if (s.status === EXTRA_STATE) {
 | |
|     if (s.gzhead.extra/* != Z_NULL*/) {
 | |
|       beg = s.pending;  /* start of bytes to update crc */
 | |
| 
 | |
|       while (s.gzindex < (s.gzhead.extra.length & 0xffff)) {
 | |
|         if (s.pending === s.pending_buf_size) {
 | |
|           if (s.gzhead.hcrc && s.pending > beg) {
 | |
|             strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|           }
 | |
|           flush_pending(strm);
 | |
|           beg = s.pending;
 | |
|           if (s.pending === s.pending_buf_size) {
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         put_byte(s, s.gzhead.extra[s.gzindex] & 0xff);
 | |
|         s.gzindex++;
 | |
|       }
 | |
|       if (s.gzhead.hcrc && s.pending > beg) {
 | |
|         strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|       }
 | |
|       if (s.gzindex === s.gzhead.extra.length) {
 | |
|         s.gzindex = 0;
 | |
|         s.status = NAME_STATE;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       s.status = NAME_STATE;
 | |
|     }
 | |
|   }
 | |
|   if (s.status === NAME_STATE) {
 | |
|     if (s.gzhead.name/* != Z_NULL*/) {
 | |
|       beg = s.pending;  /* start of bytes to update crc */
 | |
|       //int val;
 | |
| 
 | |
|       do {
 | |
|         if (s.pending === s.pending_buf_size) {
 | |
|           if (s.gzhead.hcrc && s.pending > beg) {
 | |
|             strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|           }
 | |
|           flush_pending(strm);
 | |
|           beg = s.pending;
 | |
|           if (s.pending === s.pending_buf_size) {
 | |
|             val = 1;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         // JS specific: little magic to add zero terminator to end of string
 | |
|         if (s.gzindex < s.gzhead.name.length) {
 | |
|           val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff;
 | |
|         } else {
 | |
|           val = 0;
 | |
|         }
 | |
|         put_byte(s, val);
 | |
|       } while (val !== 0);
 | |
| 
 | |
|       if (s.gzhead.hcrc && s.pending > beg) {
 | |
|         strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|       }
 | |
|       if (val === 0) {
 | |
|         s.gzindex = 0;
 | |
|         s.status = COMMENT_STATE;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       s.status = COMMENT_STATE;
 | |
|     }
 | |
|   }
 | |
|   if (s.status === COMMENT_STATE) {
 | |
|     if (s.gzhead.comment/* != Z_NULL*/) {
 | |
|       beg = s.pending;  /* start of bytes to update crc */
 | |
|       //int val;
 | |
| 
 | |
|       do {
 | |
|         if (s.pending === s.pending_buf_size) {
 | |
|           if (s.gzhead.hcrc && s.pending > beg) {
 | |
|             strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|           }
 | |
|           flush_pending(strm);
 | |
|           beg = s.pending;
 | |
|           if (s.pending === s.pending_buf_size) {
 | |
|             val = 1;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         // JS specific: little magic to add zero terminator to end of string
 | |
|         if (s.gzindex < s.gzhead.comment.length) {
 | |
|           val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff;
 | |
|         } else {
 | |
|           val = 0;
 | |
|         }
 | |
|         put_byte(s, val);
 | |
|       } while (val !== 0);
 | |
| 
 | |
|       if (s.gzhead.hcrc && s.pending > beg) {
 | |
|         strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|       }
 | |
|       if (val === 0) {
 | |
|         s.status = HCRC_STATE;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       s.status = HCRC_STATE;
 | |
|     }
 | |
|   }
 | |
|   if (s.status === HCRC_STATE) {
 | |
|     if (s.gzhead.hcrc) {
 | |
|       if (s.pending + 2 > s.pending_buf_size) {
 | |
|         flush_pending(strm);
 | |
|       }
 | |
|       if (s.pending + 2 <= s.pending_buf_size) {
 | |
|         put_byte(s, strm.adler & 0xff);
 | |
|         put_byte(s, (strm.adler >> 8) & 0xff);
 | |
|         strm.adler = 0; //crc32(0L, Z_NULL, 0);
 | |
|         s.status = BUSY_STATE;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       s.status = BUSY_STATE;
 | |
|     }
 | |
|   }
 | |
| //#endif
 | |
| 
 | |
|   /* Flush as much pending output as possible */
 | |
|   if (s.pending !== 0) {
 | |
|     flush_pending(strm);
 | |
|     if (strm.avail_out === 0) {
 | |
|       /* Since avail_out is 0, deflate will be called again with
 | |
|        * more output space, but possibly with both pending and
 | |
|        * avail_in equal to zero. There won't be anything to do,
 | |
|        * but this is not an error situation so make sure we
 | |
|        * return OK instead of BUF_ERROR at next call of deflate:
 | |
|        */
 | |
|       s.last_flush = -1;
 | |
|       return Z_OK;
 | |
|     }
 | |
| 
 | |
|     /* Make sure there is something to do and avoid duplicate consecutive
 | |
|      * flushes. For repeated and useless calls with Z_FINISH, we keep
 | |
|      * returning Z_STREAM_END instead of Z_BUF_ERROR.
 | |
|      */
 | |
|   } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) &&
 | |
|     flush !== Z_FINISH) {
 | |
|     return err(strm, Z_BUF_ERROR);
 | |
|   }
 | |
| 
 | |
|   /* User must not provide more input after the first FINISH: */
 | |
|   if (s.status === FINISH_STATE && strm.avail_in !== 0) {
 | |
|     return err(strm, Z_BUF_ERROR);
 | |
|   }
 | |
| 
 | |
|   /* Start a new block or continue the current one.
 | |
|    */
 | |
|   if (strm.avail_in !== 0 || s.lookahead !== 0 ||
 | |
|     (flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) {
 | |
|     var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) :
 | |
|       (s.strategy === Z_RLE ? deflate_rle(s, flush) :
 | |
|         configuration_table[s.level].func(s, flush));
 | |
| 
 | |
|     if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) {
 | |
|       s.status = FINISH_STATE;
 | |
|     }
 | |
|     if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) {
 | |
|       if (strm.avail_out === 0) {
 | |
|         s.last_flush = -1;
 | |
|         /* avoid BUF_ERROR next call, see above */
 | |
|       }
 | |
|       return Z_OK;
 | |
|       /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
 | |
|        * of deflate should use the same flush parameter to make sure
 | |
|        * that the flush is complete. So we don't have to output an
 | |
|        * empty block here, this will be done at next call. This also
 | |
|        * ensures that for a very small output buffer, we emit at most
 | |
|        * one empty block.
 | |
|        */
 | |
|     }
 | |
|     if (bstate === BS_BLOCK_DONE) {
 | |
|       if (flush === Z_PARTIAL_FLUSH) {
 | |
|         trees._tr_align(s);
 | |
|       }
 | |
|       else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
 | |
| 
 | |
|         trees._tr_stored_block(s, 0, 0, false);
 | |
|         /* For a full flush, this empty block will be recognized
 | |
|          * as a special marker by inflate_sync().
 | |
|          */
 | |
|         if (flush === Z_FULL_FLUSH) {
 | |
|           /*** CLEAR_HASH(s); ***/             /* forget history */
 | |
|           zero(s.head); // Fill with NIL (= 0);
 | |
| 
 | |
|           if (s.lookahead === 0) {
 | |
|             s.strstart = 0;
 | |
|             s.block_start = 0;
 | |
|             s.insert = 0;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       flush_pending(strm);
 | |
|       if (strm.avail_out === 0) {
 | |
|         s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */
 | |
|         return Z_OK;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   //Assert(strm->avail_out > 0, "bug2");
 | |
|   //if (strm.avail_out <= 0) { throw new Error("bug2");}
 | |
| 
 | |
|   if (flush !== Z_FINISH) { return Z_OK; }
 | |
|   if (s.wrap <= 0) { return Z_STREAM_END; }
 | |
| 
 | |
|   /* Write the trailer */
 | |
|   if (s.wrap === 2) {
 | |
|     put_byte(s, strm.adler & 0xff);
 | |
|     put_byte(s, (strm.adler >> 8) & 0xff);
 | |
|     put_byte(s, (strm.adler >> 16) & 0xff);
 | |
|     put_byte(s, (strm.adler >> 24) & 0xff);
 | |
|     put_byte(s, strm.total_in & 0xff);
 | |
|     put_byte(s, (strm.total_in >> 8) & 0xff);
 | |
|     put_byte(s, (strm.total_in >> 16) & 0xff);
 | |
|     put_byte(s, (strm.total_in >> 24) & 0xff);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     putShortMSB(s, strm.adler >>> 16);
 | |
|     putShortMSB(s, strm.adler & 0xffff);
 | |
|   }
 | |
| 
 | |
|   flush_pending(strm);
 | |
|   /* If avail_out is zero, the application will call deflate again
 | |
|    * to flush the rest.
 | |
|    */
 | |
|   if (s.wrap > 0) { s.wrap = -s.wrap; }
 | |
|   /* write the trailer only once! */
 | |
|   return s.pending !== 0 ? Z_OK : Z_STREAM_END;
 | |
| }
 | |
| 
 | |
| function deflateEnd(strm) {
 | |
|   var status;
 | |
| 
 | |
|   if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   status = strm.state.status;
 | |
|   if (status !== INIT_STATE &&
 | |
|     status !== EXTRA_STATE &&
 | |
|     status !== NAME_STATE &&
 | |
|     status !== COMMENT_STATE &&
 | |
|     status !== HCRC_STATE &&
 | |
|     status !== BUSY_STATE &&
 | |
|     status !== FINISH_STATE
 | |
|   ) {
 | |
|     return err(strm, Z_STREAM_ERROR);
 | |
|   }
 | |
| 
 | |
|   strm.state = null;
 | |
| 
 | |
|   return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Initializes the compression dictionary from the given byte
 | |
|  * sequence without producing any compressed output.
 | |
|  */
 | |
| function deflateSetDictionary(strm, dictionary) {
 | |
|   var dictLength = dictionary.length;
 | |
| 
 | |
|   var s;
 | |
|   var str, n;
 | |
|   var wrap;
 | |
|   var avail;
 | |
|   var next;
 | |
|   var input;
 | |
|   var tmpDict;
 | |
| 
 | |
|   if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   s = strm.state;
 | |
|   wrap = s.wrap;
 | |
| 
 | |
|   if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* when using zlib wrappers, compute Adler-32 for provided dictionary */
 | |
|   if (wrap === 1) {
 | |
|     /* adler32(strm->adler, dictionary, dictLength); */
 | |
|     strm.adler = adler32(strm.adler, dictionary, dictLength, 0);
 | |
|   }
 | |
| 
 | |
|   s.wrap = 0;   /* avoid computing Adler-32 in read_buf */
 | |
| 
 | |
|   /* if dictionary would fill window, just replace the history */
 | |
|   if (dictLength >= s.w_size) {
 | |
|     if (wrap === 0) {            /* already empty otherwise */
 | |
|       /*** CLEAR_HASH(s); ***/
 | |
|       zero(s.head); // Fill with NIL (= 0);
 | |
|       s.strstart = 0;
 | |
|       s.block_start = 0;
 | |
|       s.insert = 0;
 | |
|     }
 | |
|     /* use the tail */
 | |
|     // dictionary = dictionary.slice(dictLength - s.w_size);
 | |
|     tmpDict = new utils.Buf8(s.w_size);
 | |
|     utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0);
 | |
|     dictionary = tmpDict;
 | |
|     dictLength = s.w_size;
 | |
|   }
 | |
|   /* insert dictionary into window and hash */
 | |
|   avail = strm.avail_in;
 | |
|   next = strm.next_in;
 | |
|   input = strm.input;
 | |
|   strm.avail_in = dictLength;
 | |
|   strm.next_in = 0;
 | |
|   strm.input = dictionary;
 | |
|   fill_window(s);
 | |
|   while (s.lookahead >= MIN_MATCH) {
 | |
|     str = s.strstart;
 | |
|     n = s.lookahead - (MIN_MATCH - 1);
 | |
|     do {
 | |
|       /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
 | |
|       s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;
 | |
| 
 | |
|       s.prev[str & s.w_mask] = s.head[s.ins_h];
 | |
| 
 | |
|       s.head[s.ins_h] = str;
 | |
|       str++;
 | |
|     } while (--n);
 | |
|     s.strstart = str;
 | |
|     s.lookahead = MIN_MATCH - 1;
 | |
|     fill_window(s);
 | |
|   }
 | |
|   s.strstart += s.lookahead;
 | |
|   s.block_start = s.strstart;
 | |
|   s.insert = s.lookahead;
 | |
|   s.lookahead = 0;
 | |
|   s.match_length = s.prev_length = MIN_MATCH - 1;
 | |
|   s.match_available = 0;
 | |
|   strm.next_in = next;
 | |
|   strm.input = input;
 | |
|   strm.avail_in = avail;
 | |
|   s.wrap = wrap;
 | |
|   return Z_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| exports.deflateInit = deflateInit;
 | |
| exports.deflateInit2 = deflateInit2;
 | |
| exports.deflateReset = deflateReset;
 | |
| exports.deflateResetKeep = deflateResetKeep;
 | |
| exports.deflateSetHeader = deflateSetHeader;
 | |
| exports.deflate = deflate;
 | |
| exports.deflateEnd = deflateEnd;
 | |
| exports.deflateSetDictionary = deflateSetDictionary;
 | |
| exports.deflateInfo = 'pako deflate (from Nodeca project)';
 | |
| 
 | |
| /* Not implemented
 | |
| exports.deflateBound = deflateBound;
 | |
| exports.deflateCopy = deflateCopy;
 | |
| exports.deflateParams = deflateParams;
 | |
| exports.deflatePending = deflatePending;
 | |
| exports.deflatePrime = deflatePrime;
 | |
| exports.deflateTune = deflateTune;
 | |
| */
 | |
| 
 | |
| },{"../utils/common":3,"./adler32":5,"./crc32":7,"./messages":13,"./trees":14}],9:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| function GZheader() {
 | |
|   /* true if compressed data believed to be text */
 | |
|   this.text       = 0;
 | |
|   /* modification time */
 | |
|   this.time       = 0;
 | |
|   /* extra flags (not used when writing a gzip file) */
 | |
|   this.xflags     = 0;
 | |
|   /* operating system */
 | |
|   this.os         = 0;
 | |
|   /* pointer to extra field or Z_NULL if none */
 | |
|   this.extra      = null;
 | |
|   /* extra field length (valid if extra != Z_NULL) */
 | |
|   this.extra_len  = 0; // Actually, we don't need it in JS,
 | |
|                        // but leave for few code modifications
 | |
| 
 | |
|   //
 | |
|   // Setup limits is not necessary because in js we should not preallocate memory
 | |
|   // for inflate use constant limit in 65536 bytes
 | |
|   //
 | |
| 
 | |
|   /* space at extra (only when reading header) */
 | |
|   // this.extra_max  = 0;
 | |
|   /* pointer to zero-terminated file name or Z_NULL */
 | |
|   this.name       = '';
 | |
|   /* space at name (only when reading header) */
 | |
|   // this.name_max   = 0;
 | |
|   /* pointer to zero-terminated comment or Z_NULL */
 | |
|   this.comment    = '';
 | |
|   /* space at comment (only when reading header) */
 | |
|   // this.comm_max   = 0;
 | |
|   /* true if there was or will be a header crc */
 | |
|   this.hcrc       = 0;
 | |
|   /* true when done reading gzip header (not used when writing a gzip file) */
 | |
|   this.done       = false;
 | |
| }
 | |
| 
 | |
| module.exports = GZheader;
 | |
| 
 | |
| },{}],10:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| // See state defs from inflate.js
 | |
| var BAD = 30;       /* got a data error -- remain here until reset */
 | |
| var TYPE = 12;      /* i: waiting for type bits, including last-flag bit */
 | |
| 
 | |
| /*
 | |
|    Decode literal, length, and distance codes and write out the resulting
 | |
|    literal and match bytes until either not enough input or output is
 | |
|    available, an end-of-block is encountered, or a data error is encountered.
 | |
|    When large enough input and output buffers are supplied to inflate(), for
 | |
|    example, a 16K input buffer and a 64K output buffer, more than 95% of the
 | |
|    inflate execution time is spent in this routine.
 | |
| 
 | |
|    Entry assumptions:
 | |
| 
 | |
|         state.mode === LEN
 | |
|         strm.avail_in >= 6
 | |
|         strm.avail_out >= 258
 | |
|         start >= strm.avail_out
 | |
|         state.bits < 8
 | |
| 
 | |
|    On return, state.mode is one of:
 | |
| 
 | |
|         LEN -- ran out of enough output space or enough available input
 | |
|         TYPE -- reached end of block code, inflate() to interpret next block
 | |
|         BAD -- error in block data
 | |
| 
 | |
|    Notes:
 | |
| 
 | |
|     - The maximum input bits used by a length/distance pair is 15 bits for the
 | |
|       length code, 5 bits for the length extra, 15 bits for the distance code,
 | |
|       and 13 bits for the distance extra.  This totals 48 bits, or six bytes.
 | |
|       Therefore if strm.avail_in >= 6, then there is enough input to avoid
 | |
|       checking for available input while decoding.
 | |
| 
 | |
|     - The maximum bytes that a single length/distance pair can output is 258
 | |
|       bytes, which is the maximum length that can be coded.  inflate_fast()
 | |
|       requires strm.avail_out >= 258 for each loop to avoid checking for
 | |
|       output space.
 | |
|  */
 | |
| module.exports = function inflate_fast(strm, start) {
 | |
|   var state;
 | |
|   var _in;                    /* local strm.input */
 | |
|   var last;                   /* have enough input while in < last */
 | |
|   var _out;                   /* local strm.output */
 | |
|   var beg;                    /* inflate()'s initial strm.output */
 | |
|   var end;                    /* while out < end, enough space available */
 | |
| //#ifdef INFLATE_STRICT
 | |
|   var dmax;                   /* maximum distance from zlib header */
 | |
| //#endif
 | |
|   var wsize;                  /* window size or zero if not using window */
 | |
|   var whave;                  /* valid bytes in the window */
 | |
|   var wnext;                  /* window write index */
 | |
|   // Use `s_window` instead `window`, avoid conflict with instrumentation tools
 | |
|   var s_window;               /* allocated sliding window, if wsize != 0 */
 | |
|   var hold;                   /* local strm.hold */
 | |
|   var bits;                   /* local strm.bits */
 | |
|   var lcode;                  /* local strm.lencode */
 | |
|   var dcode;                  /* local strm.distcode */
 | |
|   var lmask;                  /* mask for first level of length codes */
 | |
|   var dmask;                  /* mask for first level of distance codes */
 | |
|   var here;                   /* retrieved table entry */
 | |
|   var op;                     /* code bits, operation, extra bits, or */
 | |
|                               /*  window position, window bytes to copy */
 | |
|   var len;                    /* match length, unused bytes */
 | |
|   var dist;                   /* match distance */
 | |
|   var from;                   /* where to copy match from */
 | |
|   var from_source;
 | |
| 
 | |
| 
 | |
|   var input, output; // JS specific, because we have no pointers
 | |
| 
 | |
|   /* copy state to local variables */
 | |
|   state = strm.state;
 | |
|   //here = state.here;
 | |
|   _in = strm.next_in;
 | |
|   input = strm.input;
 | |
|   last = _in + (strm.avail_in - 5);
 | |
|   _out = strm.next_out;
 | |
|   output = strm.output;
 | |
|   beg = _out - (start - strm.avail_out);
 | |
|   end = _out + (strm.avail_out - 257);
 | |
| //#ifdef INFLATE_STRICT
 | |
|   dmax = state.dmax;
 | |
| //#endif
 | |
|   wsize = state.wsize;
 | |
|   whave = state.whave;
 | |
|   wnext = state.wnext;
 | |
|   s_window = state.window;
 | |
|   hold = state.hold;
 | |
|   bits = state.bits;
 | |
|   lcode = state.lencode;
 | |
|   dcode = state.distcode;
 | |
|   lmask = (1 << state.lenbits) - 1;
 | |
|   dmask = (1 << state.distbits) - 1;
 | |
| 
 | |
| 
 | |
|   /* decode literals and length/distances until end-of-block or not enough
 | |
|      input data or output space */
 | |
| 
 | |
|   top:
 | |
|   do {
 | |
|     if (bits < 15) {
 | |
|       hold += input[_in++] << bits;
 | |
|       bits += 8;
 | |
|       hold += input[_in++] << bits;
 | |
|       bits += 8;
 | |
|     }
 | |
| 
 | |
|     here = lcode[hold & lmask];
 | |
| 
 | |
|     dolen:
 | |
|     for (;;) { // Goto emulation
 | |
|       op = here >>> 24/*here.bits*/;
 | |
|       hold >>>= op;
 | |
|       bits -= op;
 | |
|       op = (here >>> 16) & 0xff/*here.op*/;
 | |
|       if (op === 0) {                          /* literal */
 | |
|         //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
 | |
|         //        "inflate:         literal '%c'\n" :
 | |
|         //        "inflate:         literal 0x%02x\n", here.val));
 | |
|         output[_out++] = here & 0xffff/*here.val*/;
 | |
|       }
 | |
|       else if (op & 16) {                     /* length base */
 | |
|         len = here & 0xffff/*here.val*/;
 | |
|         op &= 15;                           /* number of extra bits */
 | |
|         if (op) {
 | |
|           if (bits < op) {
 | |
|             hold += input[_in++] << bits;
 | |
|             bits += 8;
 | |
|           }
 | |
|           len += hold & ((1 << op) - 1);
 | |
|           hold >>>= op;
 | |
|           bits -= op;
 | |
|         }
 | |
|         //Tracevv((stderr, "inflate:         length %u\n", len));
 | |
|         if (bits < 15) {
 | |
|           hold += input[_in++] << bits;
 | |
|           bits += 8;
 | |
|           hold += input[_in++] << bits;
 | |
|           bits += 8;
 | |
|         }
 | |
|         here = dcode[hold & dmask];
 | |
| 
 | |
|         dodist:
 | |
|         for (;;) { // goto emulation
 | |
|           op = here >>> 24/*here.bits*/;
 | |
|           hold >>>= op;
 | |
|           bits -= op;
 | |
|           op = (here >>> 16) & 0xff/*here.op*/;
 | |
| 
 | |
|           if (op & 16) {                      /* distance base */
 | |
|             dist = here & 0xffff/*here.val*/;
 | |
|             op &= 15;                       /* number of extra bits */
 | |
|             if (bits < op) {
 | |
|               hold += input[_in++] << bits;
 | |
|               bits += 8;
 | |
|               if (bits < op) {
 | |
|                 hold += input[_in++] << bits;
 | |
|                 bits += 8;
 | |
|               }
 | |
|             }
 | |
|             dist += hold & ((1 << op) - 1);
 | |
| //#ifdef INFLATE_STRICT
 | |
|             if (dist > dmax) {
 | |
|               strm.msg = 'invalid distance too far back';
 | |
|               state.mode = BAD;
 | |
|               break top;
 | |
|             }
 | |
| //#endif
 | |
|             hold >>>= op;
 | |
|             bits -= op;
 | |
|             //Tracevv((stderr, "inflate:         distance %u\n", dist));
 | |
|             op = _out - beg;                /* max distance in output */
 | |
|             if (dist > op) {                /* see if copy from window */
 | |
|               op = dist - op;               /* distance back in window */
 | |
|               if (op > whave) {
 | |
|                 if (state.sane) {
 | |
|                   strm.msg = 'invalid distance too far back';
 | |
|                   state.mode = BAD;
 | |
|                   break top;
 | |
|                 }
 | |
| 
 | |
| // (!) This block is disabled in zlib defaults,
 | |
| // don't enable it for binary compatibility
 | |
| //#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
 | |
| //                if (len <= op - whave) {
 | |
| //                  do {
 | |
| //                    output[_out++] = 0;
 | |
| //                  } while (--len);
 | |
| //                  continue top;
 | |
| //                }
 | |
| //                len -= op - whave;
 | |
| //                do {
 | |
| //                  output[_out++] = 0;
 | |
| //                } while (--op > whave);
 | |
| //                if (op === 0) {
 | |
| //                  from = _out - dist;
 | |
| //                  do {
 | |
| //                    output[_out++] = output[from++];
 | |
| //                  } while (--len);
 | |
| //                  continue top;
 | |
| //                }
 | |
| //#endif
 | |
|               }
 | |
|               from = 0; // window index
 | |
|               from_source = s_window;
 | |
|               if (wnext === 0) {           /* very common case */
 | |
|                 from += wsize - op;
 | |
|                 if (op < len) {         /* some from window */
 | |
|                   len -= op;
 | |
|                   do {
 | |
|                     output[_out++] = s_window[from++];
 | |
|                   } while (--op);
 | |
|                   from = _out - dist;  /* rest from output */
 | |
|                   from_source = output;
 | |
|                 }
 | |
|               }
 | |
|               else if (wnext < op) {      /* wrap around window */
 | |
|                 from += wsize + wnext - op;
 | |
|                 op -= wnext;
 | |
|                 if (op < len) {         /* some from end of window */
 | |
|                   len -= op;
 | |
|                   do {
 | |
|                     output[_out++] = s_window[from++];
 | |
|                   } while (--op);
 | |
|                   from = 0;
 | |
|                   if (wnext < len) {  /* some from start of window */
 | |
|                     op = wnext;
 | |
|                     len -= op;
 | |
|                     do {
 | |
|                       output[_out++] = s_window[from++];
 | |
|                     } while (--op);
 | |
|                     from = _out - dist;      /* rest from output */
 | |
|                     from_source = output;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               else {                      /* contiguous in window */
 | |
|                 from += wnext - op;
 | |
|                 if (op < len) {         /* some from window */
 | |
|                   len -= op;
 | |
|                   do {
 | |
|                     output[_out++] = s_window[from++];
 | |
|                   } while (--op);
 | |
|                   from = _out - dist;  /* rest from output */
 | |
|                   from_source = output;
 | |
|                 }
 | |
|               }
 | |
|               while (len > 2) {
 | |
|                 output[_out++] = from_source[from++];
 | |
|                 output[_out++] = from_source[from++];
 | |
|                 output[_out++] = from_source[from++];
 | |
|                 len -= 3;
 | |
|               }
 | |
|               if (len) {
 | |
|                 output[_out++] = from_source[from++];
 | |
|                 if (len > 1) {
 | |
|                   output[_out++] = from_source[from++];
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             else {
 | |
|               from = _out - dist;          /* copy direct from output */
 | |
|               do {                        /* minimum length is three */
 | |
|                 output[_out++] = output[from++];
 | |
|                 output[_out++] = output[from++];
 | |
|                 output[_out++] = output[from++];
 | |
|                 len -= 3;
 | |
|               } while (len > 2);
 | |
|               if (len) {
 | |
|                 output[_out++] = output[from++];
 | |
|                 if (len > 1) {
 | |
|                   output[_out++] = output[from++];
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           else if ((op & 64) === 0) {          /* 2nd level distance code */
 | |
|             here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
 | |
|             continue dodist;
 | |
|           }
 | |
|           else {
 | |
|             strm.msg = 'invalid distance code';
 | |
|             state.mode = BAD;
 | |
|             break top;
 | |
|           }
 | |
| 
 | |
|           break; // need to emulate goto via "continue"
 | |
|         }
 | |
|       }
 | |
|       else if ((op & 64) === 0) {              /* 2nd level length code */
 | |
|         here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
 | |
|         continue dolen;
 | |
|       }
 | |
|       else if (op & 32) {                     /* end-of-block */
 | |
|         //Tracevv((stderr, "inflate:         end of block\n"));
 | |
|         state.mode = TYPE;
 | |
|         break top;
 | |
|       }
 | |
|       else {
 | |
|         strm.msg = 'invalid literal/length code';
 | |
|         state.mode = BAD;
 | |
|         break top;
 | |
|       }
 | |
| 
 | |
|       break; // need to emulate goto via "continue"
 | |
|     }
 | |
|   } while (_in < last && _out < end);
 | |
| 
 | |
|   /* return unused bytes (on entry, bits < 8, so in won't go too far back) */
 | |
|   len = bits >> 3;
 | |
|   _in -= len;
 | |
|   bits -= len << 3;
 | |
|   hold &= (1 << bits) - 1;
 | |
| 
 | |
|   /* update state and return */
 | |
|   strm.next_in = _in;
 | |
|   strm.next_out = _out;
 | |
|   strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last));
 | |
|   strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end));
 | |
|   state.hold = hold;
 | |
|   state.bits = bits;
 | |
|   return;
 | |
| };
 | |
| 
 | |
| },{}],11:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| var utils         = require('../utils/common');
 | |
| var adler32       = require('./adler32');
 | |
| var crc32         = require('./crc32');
 | |
| var inflate_fast  = require('./inffast');
 | |
| var inflate_table = require('./inftrees');
 | |
| 
 | |
| var CODES = 0;
 | |
| var LENS = 1;
 | |
| var DISTS = 2;
 | |
| 
 | |
| /* Public constants ==========================================================*/
 | |
| /* ===========================================================================*/
 | |
| 
 | |
| 
 | |
| /* Allowed flush values; see deflate() and inflate() below for details */
 | |
| //var Z_NO_FLUSH      = 0;
 | |
| //var Z_PARTIAL_FLUSH = 1;
 | |
| //var Z_SYNC_FLUSH    = 2;
 | |
| //var Z_FULL_FLUSH    = 3;
 | |
| var Z_FINISH        = 4;
 | |
| var Z_BLOCK         = 5;
 | |
| var Z_TREES         = 6;
 | |
| 
 | |
| 
 | |
| /* Return codes for the compression/decompression functions. Negative values
 | |
|  * are errors, positive values are used for special but normal events.
 | |
|  */
 | |
| var Z_OK            = 0;
 | |
| var Z_STREAM_END    = 1;
 | |
| var Z_NEED_DICT     = 2;
 | |
| //var Z_ERRNO         = -1;
 | |
| var Z_STREAM_ERROR  = -2;
 | |
| var Z_DATA_ERROR    = -3;
 | |
| var Z_MEM_ERROR     = -4;
 | |
| var Z_BUF_ERROR     = -5;
 | |
| //var Z_VERSION_ERROR = -6;
 | |
| 
 | |
| /* The deflate compression method */
 | |
| var Z_DEFLATED  = 8;
 | |
| 
 | |
| 
 | |
| /* STATES ====================================================================*/
 | |
| /* ===========================================================================*/
 | |
| 
 | |
| 
 | |
| var    HEAD = 1;       /* i: waiting for magic header */
 | |
| var    FLAGS = 2;      /* i: waiting for method and flags (gzip) */
 | |
| var    TIME = 3;       /* i: waiting for modification time (gzip) */
 | |
| var    OS = 4;         /* i: waiting for extra flags and operating system (gzip) */
 | |
| var    EXLEN = 5;      /* i: waiting for extra length (gzip) */
 | |
| var    EXTRA = 6;      /* i: waiting for extra bytes (gzip) */
 | |
| var    NAME = 7;       /* i: waiting for end of file name (gzip) */
 | |
| var    COMMENT = 8;    /* i: waiting for end of comment (gzip) */
 | |
| var    HCRC = 9;       /* i: waiting for header crc (gzip) */
 | |
| var    DICTID = 10;    /* i: waiting for dictionary check value */
 | |
| var    DICT = 11;      /* waiting for inflateSetDictionary() call */
 | |
| var        TYPE = 12;      /* i: waiting for type bits, including last-flag bit */
 | |
| var        TYPEDO = 13;    /* i: same, but skip check to exit inflate on new block */
 | |
| var        STORED = 14;    /* i: waiting for stored size (length and complement) */
 | |
| var        COPY_ = 15;     /* i/o: same as COPY below, but only first time in */
 | |
| var        COPY = 16;      /* i/o: waiting for input or output to copy stored block */
 | |
| var        TABLE = 17;     /* i: waiting for dynamic block table lengths */
 | |
| var        LENLENS = 18;   /* i: waiting for code length code lengths */
 | |
| var        CODELENS = 19;  /* i: waiting for length/lit and distance code lengths */
 | |
| var            LEN_ = 20;      /* i: same as LEN below, but only first time in */
 | |
| var            LEN = 21;       /* i: waiting for length/lit/eob code */
 | |
| var            LENEXT = 22;    /* i: waiting for length extra bits */
 | |
| var            DIST = 23;      /* i: waiting for distance code */
 | |
| var            DISTEXT = 24;   /* i: waiting for distance extra bits */
 | |
| var            MATCH = 25;     /* o: waiting for output space to copy string */
 | |
| var            LIT = 26;       /* o: waiting for output space to write literal */
 | |
| var    CHECK = 27;     /* i: waiting for 32-bit check value */
 | |
| var    LENGTH = 28;    /* i: waiting for 32-bit length (gzip) */
 | |
| var    DONE = 29;      /* finished check, done -- remain here until reset */
 | |
| var    BAD = 30;       /* got a data error -- remain here until reset */
 | |
| var    MEM = 31;       /* got an inflate() memory error -- remain here until reset */
 | |
| var    SYNC = 32;      /* looking for synchronization bytes to restart inflate() */
 | |
| 
 | |
| /* ===========================================================================*/
 | |
| 
 | |
| 
 | |
| 
 | |
| var ENOUGH_LENS = 852;
 | |
| var ENOUGH_DISTS = 592;
 | |
| //var ENOUGH =  (ENOUGH_LENS+ENOUGH_DISTS);
 | |
| 
 | |
| var MAX_WBITS = 15;
 | |
| /* 32K LZ77 window */
 | |
| var DEF_WBITS = MAX_WBITS;
 | |
| 
 | |
| 
 | |
| function zswap32(q) {
 | |
|   return  (((q >>> 24) & 0xff) +
 | |
|           ((q >>> 8) & 0xff00) +
 | |
|           ((q & 0xff00) << 8) +
 | |
|           ((q & 0xff) << 24));
 | |
| }
 | |
| 
 | |
| 
 | |
| function InflateState() {
 | |
|   this.mode = 0;             /* current inflate mode */
 | |
|   this.last = false;          /* true if processing last block */
 | |
|   this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip */
 | |
|   this.havedict = false;      /* true if dictionary provided */
 | |
|   this.flags = 0;             /* gzip header method and flags (0 if zlib) */
 | |
|   this.dmax = 0;              /* zlib header max distance (INFLATE_STRICT) */
 | |
|   this.check = 0;             /* protected copy of check value */
 | |
|   this.total = 0;             /* protected copy of output count */
 | |
|   // TODO: may be {}
 | |
|   this.head = null;           /* where to save gzip header information */
 | |
| 
 | |
|   /* sliding window */
 | |
|   this.wbits = 0;             /* log base 2 of requested window size */
 | |
|   this.wsize = 0;             /* window size or zero if not using window */
 | |
|   this.whave = 0;             /* valid bytes in the window */
 | |
|   this.wnext = 0;             /* window write index */
 | |
|   this.window = null;         /* allocated sliding window, if needed */
 | |
| 
 | |
|   /* bit accumulator */
 | |
|   this.hold = 0;              /* input bit accumulator */
 | |
|   this.bits = 0;              /* number of bits in "in" */
 | |
| 
 | |
|   /* for string and stored block copying */
 | |
|   this.length = 0;            /* literal or length of data to copy */
 | |
|   this.offset = 0;            /* distance back to copy string from */
 | |
| 
 | |
|   /* for table and code decoding */
 | |
|   this.extra = 0;             /* extra bits needed */
 | |
| 
 | |
|   /* fixed and dynamic code tables */
 | |
|   this.lencode = null;          /* starting table for length/literal codes */
 | |
|   this.distcode = null;         /* starting table for distance codes */
 | |
|   this.lenbits = 0;           /* index bits for lencode */
 | |
|   this.distbits = 0;          /* index bits for distcode */
 | |
| 
 | |
|   /* dynamic table building */
 | |
|   this.ncode = 0;             /* number of code length code lengths */
 | |
|   this.nlen = 0;              /* number of length code lengths */
 | |
|   this.ndist = 0;             /* number of distance code lengths */
 | |
|   this.have = 0;              /* number of code lengths in lens[] */
 | |
|   this.next = null;              /* next available space in codes[] */
 | |
| 
 | |
|   this.lens = new utils.Buf16(320); /* temporary storage for code lengths */
 | |
|   this.work = new utils.Buf16(288); /* work area for code table building */
 | |
| 
 | |
|   /*
 | |
|    because we don't have pointers in js, we use lencode and distcode directly
 | |
|    as buffers so we don't need codes
 | |
|   */
 | |
|   //this.codes = new utils.Buf32(ENOUGH);       /* space for code tables */
 | |
|   this.lendyn = null;              /* dynamic table for length/literal codes (JS specific) */
 | |
|   this.distdyn = null;             /* dynamic table for distance codes (JS specific) */
 | |
|   this.sane = 0;                   /* if false, allow invalid distance too far */
 | |
|   this.back = 0;                   /* bits back of last unprocessed length/lit */
 | |
|   this.was = 0;                    /* initial length of match */
 | |
| }
 | |
| 
 | |
| function inflateResetKeep(strm) {
 | |
|   var state;
 | |
| 
 | |
|   if (!strm || !strm.state) { return Z_STREAM_ERROR; }
 | |
|   state = strm.state;
 | |
|   strm.total_in = strm.total_out = state.total = 0;
 | |
|   strm.msg = ''; /*Z_NULL*/
 | |
|   if (state.wrap) {       /* to support ill-conceived Java test suite */
 | |
|     strm.adler = state.wrap & 1;
 | |
|   }
 | |
|   state.mode = HEAD;
 | |
|   state.last = 0;
 | |
|   state.havedict = 0;
 | |
|   state.dmax = 32768;
 | |
|   state.head = null/*Z_NULL*/;
 | |
|   state.hold = 0;
 | |
|   state.bits = 0;
 | |
|   //state.lencode = state.distcode = state.next = state.codes;
 | |
|   state.lencode = state.lendyn = new utils.Buf32(ENOUGH_LENS);
 | |
|   state.distcode = state.distdyn = new utils.Buf32(ENOUGH_DISTS);
 | |
| 
 | |
|   state.sane = 1;
 | |
|   state.back = -1;
 | |
|   //Tracev((stderr, "inflate: reset\n"));
 | |
|   return Z_OK;
 | |
| }
 | |
| 
 | |
| function inflateReset(strm) {
 | |
|   var state;
 | |
| 
 | |
|   if (!strm || !strm.state) { return Z_STREAM_ERROR; }
 | |
|   state = strm.state;
 | |
|   state.wsize = 0;
 | |
|   state.whave = 0;
 | |
|   state.wnext = 0;
 | |
|   return inflateResetKeep(strm);
 | |
| 
 | |
| }
 | |
| 
 | |
| function inflateReset2(strm, windowBits) {
 | |
|   var wrap;
 | |
|   var state;
 | |
| 
 | |
|   /* get the state */
 | |
|   if (!strm || !strm.state) { return Z_STREAM_ERROR; }
 | |
|   state = strm.state;
 | |
| 
 | |
|   /* extract wrap request from windowBits parameter */
 | |
|   if (windowBits < 0) {
 | |
|     wrap = 0;
 | |
|     windowBits = -windowBits;
 | |
|   }
 | |
|   else {
 | |
|     wrap = (windowBits >> 4) + 1;
 | |
|     if (windowBits < 48) {
 | |
|       windowBits &= 15;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* set number of window bits, free window if different */
 | |
|   if (windowBits && (windowBits < 8 || windowBits > 15)) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
|   if (state.window !== null && state.wbits !== windowBits) {
 | |
|     state.window = null;
 | |
|   }
 | |
| 
 | |
|   /* update state and reset the rest of it */
 | |
|   state.wrap = wrap;
 | |
|   state.wbits = windowBits;
 | |
|   return inflateReset(strm);
 | |
| }
 | |
| 
 | |
| function inflateInit2(strm, windowBits) {
 | |
|   var ret;
 | |
|   var state;
 | |
| 
 | |
|   if (!strm) { return Z_STREAM_ERROR; }
 | |
|   //strm.msg = Z_NULL;                 /* in case we return an error */
 | |
| 
 | |
|   state = new InflateState();
 | |
| 
 | |
|   //if (state === Z_NULL) return Z_MEM_ERROR;
 | |
|   //Tracev((stderr, "inflate: allocated\n"));
 | |
|   strm.state = state;
 | |
|   state.window = null/*Z_NULL*/;
 | |
|   ret = inflateReset2(strm, windowBits);
 | |
|   if (ret !== Z_OK) {
 | |
|     strm.state = null/*Z_NULL*/;
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| function inflateInit(strm) {
 | |
|   return inflateInit2(strm, DEF_WBITS);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  Return state with length and distance decoding tables and index sizes set to
 | |
|  fixed code decoding.  Normally this returns fixed tables from inffixed.h.
 | |
|  If BUILDFIXED is defined, then instead this routine builds the tables the
 | |
|  first time it's called, and returns those tables the first time and
 | |
|  thereafter.  This reduces the size of the code by about 2K bytes, in
 | |
|  exchange for a little execution time.  However, BUILDFIXED should not be
 | |
|  used for threaded applications, since the rewriting of the tables and virgin
 | |
|  may not be thread-safe.
 | |
|  */
 | |
| var virgin = true;
 | |
| 
 | |
| var lenfix, distfix; // We have no pointers in JS, so keep tables separate
 | |
| 
 | |
| function fixedtables(state) {
 | |
|   /* build fixed huffman tables if first call (may not be thread safe) */
 | |
|   if (virgin) {
 | |
|     var sym;
 | |
| 
 | |
|     lenfix = new utils.Buf32(512);
 | |
|     distfix = new utils.Buf32(32);
 | |
| 
 | |
|     /* literal/length table */
 | |
|     sym = 0;
 | |
|     while (sym < 144) { state.lens[sym++] = 8; }
 | |
|     while (sym < 256) { state.lens[sym++] = 9; }
 | |
|     while (sym < 280) { state.lens[sym++] = 7; }
 | |
|     while (sym < 288) { state.lens[sym++] = 8; }
 | |
| 
 | |
|     inflate_table(LENS,  state.lens, 0, 288, lenfix,   0, state.work, { bits: 9 });
 | |
| 
 | |
|     /* distance table */
 | |
|     sym = 0;
 | |
|     while (sym < 32) { state.lens[sym++] = 5; }
 | |
| 
 | |
|     inflate_table(DISTS, state.lens, 0, 32,   distfix, 0, state.work, { bits: 5 });
 | |
| 
 | |
|     /* do this just once */
 | |
|     virgin = false;
 | |
|   }
 | |
| 
 | |
|   state.lencode = lenfix;
 | |
|   state.lenbits = 9;
 | |
|   state.distcode = distfix;
 | |
|   state.distbits = 5;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  Update the window with the last wsize (normally 32K) bytes written before
 | |
|  returning.  If window does not exist yet, create it.  This is only called
 | |
|  when a window is already in use, or when output has been written during this
 | |
|  inflate call, but the end of the deflate stream has not been reached yet.
 | |
|  It is also called to create a window for dictionary data when a dictionary
 | |
|  is loaded.
 | |
| 
 | |
|  Providing output buffers larger than 32K to inflate() should provide a speed
 | |
|  advantage, since only the last 32K of output is copied to the sliding window
 | |
|  upon return from inflate(), and since all distances after the first 32K of
 | |
|  output will fall in the output data, making match copies simpler and faster.
 | |
|  The advantage may be dependent on the size of the processor's data caches.
 | |
|  */
 | |
| function updatewindow(strm, src, end, copy) {
 | |
|   var dist;
 | |
|   var state = strm.state;
 | |
| 
 | |
|   /* if it hasn't been done already, allocate space for the window */
 | |
|   if (state.window === null) {
 | |
|     state.wsize = 1 << state.wbits;
 | |
|     state.wnext = 0;
 | |
|     state.whave = 0;
 | |
| 
 | |
|     state.window = new utils.Buf8(state.wsize);
 | |
|   }
 | |
| 
 | |
|   /* copy state->wsize or less output bytes into the circular window */
 | |
|   if (copy >= state.wsize) {
 | |
|     utils.arraySet(state.window, src, end - state.wsize, state.wsize, 0);
 | |
|     state.wnext = 0;
 | |
|     state.whave = state.wsize;
 | |
|   }
 | |
|   else {
 | |
|     dist = state.wsize - state.wnext;
 | |
|     if (dist > copy) {
 | |
|       dist = copy;
 | |
|     }
 | |
|     //zmemcpy(state->window + state->wnext, end - copy, dist);
 | |
|     utils.arraySet(state.window, src, end - copy, dist, state.wnext);
 | |
|     copy -= dist;
 | |
|     if (copy) {
 | |
|       //zmemcpy(state->window, end - copy, copy);
 | |
|       utils.arraySet(state.window, src, end - copy, copy, 0);
 | |
|       state.wnext = copy;
 | |
|       state.whave = state.wsize;
 | |
|     }
 | |
|     else {
 | |
|       state.wnext += dist;
 | |
|       if (state.wnext === state.wsize) { state.wnext = 0; }
 | |
|       if (state.whave < state.wsize) { state.whave += dist; }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| function inflate(strm, flush) {
 | |
|   var state;
 | |
|   var input, output;          // input/output buffers
 | |
|   var next;                   /* next input INDEX */
 | |
|   var put;                    /* next output INDEX */
 | |
|   var have, left;             /* available input and output */
 | |
|   var hold;                   /* bit buffer */
 | |
|   var bits;                   /* bits in bit buffer */
 | |
|   var _in, _out;              /* save starting available input and output */
 | |
|   var copy;                   /* number of stored or match bytes to copy */
 | |
|   var from;                   /* where to copy match bytes from */
 | |
|   var from_source;
 | |
|   var here = 0;               /* current decoding table entry */
 | |
|   var here_bits, here_op, here_val; // paked "here" denormalized (JS specific)
 | |
|   //var last;                   /* parent table entry */
 | |
|   var last_bits, last_op, last_val; // paked "last" denormalized (JS specific)
 | |
|   var len;                    /* length to copy for repeats, bits to drop */
 | |
|   var ret;                    /* return code */
 | |
|   var hbuf = new utils.Buf8(4);    /* buffer for gzip header crc calculation */
 | |
|   var opts;
 | |
| 
 | |
|   var n; // temporary var for NEED_BITS
 | |
| 
 | |
|   var order = /* permutation of code lengths */
 | |
|     [ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ];
 | |
| 
 | |
| 
 | |
|   if (!strm || !strm.state || !strm.output ||
 | |
|       (!strm.input && strm.avail_in !== 0)) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   state = strm.state;
 | |
|   if (state.mode === TYPE) { state.mode = TYPEDO; }    /* skip check */
 | |
| 
 | |
| 
 | |
|   //--- LOAD() ---
 | |
|   put = strm.next_out;
 | |
|   output = strm.output;
 | |
|   left = strm.avail_out;
 | |
|   next = strm.next_in;
 | |
|   input = strm.input;
 | |
|   have = strm.avail_in;
 | |
|   hold = state.hold;
 | |
|   bits = state.bits;
 | |
|   //---
 | |
| 
 | |
|   _in = have;
 | |
|   _out = left;
 | |
|   ret = Z_OK;
 | |
| 
 | |
|   inf_leave: // goto emulation
 | |
|   for (;;) {
 | |
|     switch (state.mode) {
 | |
|       case HEAD:
 | |
|         if (state.wrap === 0) {
 | |
|           state.mode = TYPEDO;
 | |
|           break;
 | |
|         }
 | |
|         //=== NEEDBITS(16);
 | |
|         while (bits < 16) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|         }
 | |
|         //===//
 | |
|         if ((state.wrap & 2) && hold === 0x8b1f) {  /* gzip header */
 | |
|           state.check = 0/*crc32(0L, Z_NULL, 0)*/;
 | |
|           //=== CRC2(state.check, hold);
 | |
|           hbuf[0] = hold & 0xff;
 | |
|           hbuf[1] = (hold >>> 8) & 0xff;
 | |
|           state.check = crc32(state.check, hbuf, 2, 0);
 | |
|           //===//
 | |
| 
 | |
|           //=== INITBITS();
 | |
|           hold = 0;
 | |
|           bits = 0;
 | |
|           //===//
 | |
|           state.mode = FLAGS;
 | |
|           break;
 | |
|         }
 | |
|         state.flags = 0;           /* expect zlib header */
 | |
|         if (state.head) {
 | |
|           state.head.done = false;
 | |
|         }
 | |
|         if (!(state.wrap & 1) ||   /* check if zlib header allowed */
 | |
|           (((hold & 0xff)/*BITS(8)*/ << 8) + (hold >> 8)) % 31) {
 | |
|           strm.msg = 'incorrect header check';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         if ((hold & 0x0f)/*BITS(4)*/ !== Z_DEFLATED) {
 | |
|           strm.msg = 'unknown compression method';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         //--- DROPBITS(4) ---//
 | |
|         hold >>>= 4;
 | |
|         bits -= 4;
 | |
|         //---//
 | |
|         len = (hold & 0x0f)/*BITS(4)*/ + 8;
 | |
|         if (state.wbits === 0) {
 | |
|           state.wbits = len;
 | |
|         }
 | |
|         else if (len > state.wbits) {
 | |
|           strm.msg = 'invalid window size';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         state.dmax = 1 << len;
 | |
|         //Tracev((stderr, "inflate:   zlib header ok\n"));
 | |
|         strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
 | |
|         state.mode = hold & 0x200 ? DICTID : TYPE;
 | |
|         //=== INITBITS();
 | |
|         hold = 0;
 | |
|         bits = 0;
 | |
|         //===//
 | |
|         break;
 | |
|       case FLAGS:
 | |
|         //=== NEEDBITS(16); */
 | |
|         while (bits < 16) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|         }
 | |
|         //===//
 | |
|         state.flags = hold;
 | |
|         if ((state.flags & 0xff) !== Z_DEFLATED) {
 | |
|           strm.msg = 'unknown compression method';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         if (state.flags & 0xe000) {
 | |
|           strm.msg = 'unknown header flags set';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         if (state.head) {
 | |
|           state.head.text = ((hold >> 8) & 1);
 | |
|         }
 | |
|         if (state.flags & 0x0200) {
 | |
|           //=== CRC2(state.check, hold);
 | |
|           hbuf[0] = hold & 0xff;
 | |
|           hbuf[1] = (hold >>> 8) & 0xff;
 | |
|           state.check = crc32(state.check, hbuf, 2, 0);
 | |
|           //===//
 | |
|         }
 | |
|         //=== INITBITS();
 | |
|         hold = 0;
 | |
|         bits = 0;
 | |
|         //===//
 | |
|         state.mode = TIME;
 | |
|         /* falls through */
 | |
|       case TIME:
 | |
|         //=== NEEDBITS(32); */
 | |
|         while (bits < 32) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|         }
 | |
|         //===//
 | |
|         if (state.head) {
 | |
|           state.head.time = hold;
 | |
|         }
 | |
|         if (state.flags & 0x0200) {
 | |
|           //=== CRC4(state.check, hold)
 | |
|           hbuf[0] = hold & 0xff;
 | |
|           hbuf[1] = (hold >>> 8) & 0xff;
 | |
|           hbuf[2] = (hold >>> 16) & 0xff;
 | |
|           hbuf[3] = (hold >>> 24) & 0xff;
 | |
|           state.check = crc32(state.check, hbuf, 4, 0);
 | |
|           //===
 | |
|         }
 | |
|         //=== INITBITS();
 | |
|         hold = 0;
 | |
|         bits = 0;
 | |
|         //===//
 | |
|         state.mode = OS;
 | |
|         /* falls through */
 | |
|       case OS:
 | |
|         //=== NEEDBITS(16); */
 | |
|         while (bits < 16) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|         }
 | |
|         //===//
 | |
|         if (state.head) {
 | |
|           state.head.xflags = (hold & 0xff);
 | |
|           state.head.os = (hold >> 8);
 | |
|         }
 | |
|         if (state.flags & 0x0200) {
 | |
|           //=== CRC2(state.check, hold);
 | |
|           hbuf[0] = hold & 0xff;
 | |
|           hbuf[1] = (hold >>> 8) & 0xff;
 | |
|           state.check = crc32(state.check, hbuf, 2, 0);
 | |
|           //===//
 | |
|         }
 | |
|         //=== INITBITS();
 | |
|         hold = 0;
 | |
|         bits = 0;
 | |
|         //===//
 | |
|         state.mode = EXLEN;
 | |
|         /* falls through */
 | |
|       case EXLEN:
 | |
|         if (state.flags & 0x0400) {
 | |
|           //=== NEEDBITS(16); */
 | |
|           while (bits < 16) {
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             hold += input[next++] << bits;
 | |
|             bits += 8;
 | |
|           }
 | |
|           //===//
 | |
|           state.length = hold;
 | |
|           if (state.head) {
 | |
|             state.head.extra_len = hold;
 | |
|           }
 | |
|           if (state.flags & 0x0200) {
 | |
|             //=== CRC2(state.check, hold);
 | |
|             hbuf[0] = hold & 0xff;
 | |
|             hbuf[1] = (hold >>> 8) & 0xff;
 | |
|             state.check = crc32(state.check, hbuf, 2, 0);
 | |
|             //===//
 | |
|           }
 | |
|           //=== INITBITS();
 | |
|           hold = 0;
 | |
|           bits = 0;
 | |
|           //===//
 | |
|         }
 | |
|         else if (state.head) {
 | |
|           state.head.extra = null/*Z_NULL*/;
 | |
|         }
 | |
|         state.mode = EXTRA;
 | |
|         /* falls through */
 | |
|       case EXTRA:
 | |
|         if (state.flags & 0x0400) {
 | |
|           copy = state.length;
 | |
|           if (copy > have) { copy = have; }
 | |
|           if (copy) {
 | |
|             if (state.head) {
 | |
|               len = state.head.extra_len - state.length;
 | |
|               if (!state.head.extra) {
 | |
|                 // Use untyped array for more convenient processing later
 | |
|                 state.head.extra = new Array(state.head.extra_len);
 | |
|               }
 | |
|               utils.arraySet(
 | |
|                 state.head.extra,
 | |
|                 input,
 | |
|                 next,
 | |
|                 // extra field is limited to 65536 bytes
 | |
|                 // - no need for additional size check
 | |
|                 copy,
 | |
|                 /*len + copy > state.head.extra_max - len ? state.head.extra_max : copy,*/
 | |
|                 len
 | |
|               );
 | |
|               //zmemcpy(state.head.extra + len, next,
 | |
|               //        len + copy > state.head.extra_max ?
 | |
|               //        state.head.extra_max - len : copy);
 | |
|             }
 | |
|             if (state.flags & 0x0200) {
 | |
|               state.check = crc32(state.check, input, copy, next);
 | |
|             }
 | |
|             have -= copy;
 | |
|             next += copy;
 | |
|             state.length -= copy;
 | |
|           }
 | |
|           if (state.length) { break inf_leave; }
 | |
|         }
 | |
|         state.length = 0;
 | |
|         state.mode = NAME;
 | |
|         /* falls through */
 | |
|       case NAME:
 | |
|         if (state.flags & 0x0800) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           copy = 0;
 | |
|           do {
 | |
|             // TODO: 2 or 1 bytes?
 | |
|             len = input[next + copy++];
 | |
|             /* use constant limit because in js we should not preallocate memory */
 | |
|             if (state.head && len &&
 | |
|                 (state.length < 65536 /*state.head.name_max*/)) {
 | |
|               state.head.name += String.fromCharCode(len);
 | |
|             }
 | |
|           } while (len && copy < have);
 | |
| 
 | |
|           if (state.flags & 0x0200) {
 | |
|             state.check = crc32(state.check, input, copy, next);
 | |
|           }
 | |
|           have -= copy;
 | |
|           next += copy;
 | |
|           if (len) { break inf_leave; }
 | |
|         }
 | |
|         else if (state.head) {
 | |
|           state.head.name = null;
 | |
|         }
 | |
|         state.length = 0;
 | |
|         state.mode = COMMENT;
 | |
|         /* falls through */
 | |
|       case COMMENT:
 | |
|         if (state.flags & 0x1000) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           copy = 0;
 | |
|           do {
 | |
|             len = input[next + copy++];
 | |
|             /* use constant limit because in js we should not preallocate memory */
 | |
|             if (state.head && len &&
 | |
|                 (state.length < 65536 /*state.head.comm_max*/)) {
 | |
|               state.head.comment += String.fromCharCode(len);
 | |
|             }
 | |
|           } while (len && copy < have);
 | |
|           if (state.flags & 0x0200) {
 | |
|             state.check = crc32(state.check, input, copy, next);
 | |
|           }
 | |
|           have -= copy;
 | |
|           next += copy;
 | |
|           if (len) { break inf_leave; }
 | |
|         }
 | |
|         else if (state.head) {
 | |
|           state.head.comment = null;
 | |
|         }
 | |
|         state.mode = HCRC;
 | |
|         /* falls through */
 | |
|       case HCRC:
 | |
|         if (state.flags & 0x0200) {
 | |
|           //=== NEEDBITS(16); */
 | |
|           while (bits < 16) {
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             hold += input[next++] << bits;
 | |
|             bits += 8;
 | |
|           }
 | |
|           //===//
 | |
|           if (hold !== (state.check & 0xffff)) {
 | |
|             strm.msg = 'header crc mismatch';
 | |
|             state.mode = BAD;
 | |
|             break;
 | |
|           }
 | |
|           //=== INITBITS();
 | |
|           hold = 0;
 | |
|           bits = 0;
 | |
|           //===//
 | |
|         }
 | |
|         if (state.head) {
 | |
|           state.head.hcrc = ((state.flags >> 9) & 1);
 | |
|           state.head.done = true;
 | |
|         }
 | |
|         strm.adler = state.check = 0;
 | |
|         state.mode = TYPE;
 | |
|         break;
 | |
|       case DICTID:
 | |
|         //=== NEEDBITS(32); */
 | |
|         while (bits < 32) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|         }
 | |
|         //===//
 | |
|         strm.adler = state.check = zswap32(hold);
 | |
|         //=== INITBITS();
 | |
|         hold = 0;
 | |
|         bits = 0;
 | |
|         //===//
 | |
|         state.mode = DICT;
 | |
|         /* falls through */
 | |
|       case DICT:
 | |
|         if (state.havedict === 0) {
 | |
|           //--- RESTORE() ---
 | |
|           strm.next_out = put;
 | |
|           strm.avail_out = left;
 | |
|           strm.next_in = next;
 | |
|           strm.avail_in = have;
 | |
|           state.hold = hold;
 | |
|           state.bits = bits;
 | |
|           //---
 | |
|           return Z_NEED_DICT;
 | |
|         }
 | |
|         strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
 | |
|         state.mode = TYPE;
 | |
|         /* falls through */
 | |
|       case TYPE:
 | |
|         if (flush === Z_BLOCK || flush === Z_TREES) { break inf_leave; }
 | |
|         /* falls through */
 | |
|       case TYPEDO:
 | |
|         if (state.last) {
 | |
|           //--- BYTEBITS() ---//
 | |
|           hold >>>= bits & 7;
 | |
|           bits -= bits & 7;
 | |
|           //---//
 | |
|           state.mode = CHECK;
 | |
|           break;
 | |
|         }
 | |
|         //=== NEEDBITS(3); */
 | |
|         while (bits < 3) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|         }
 | |
|         //===//
 | |
|         state.last = (hold & 0x01)/*BITS(1)*/;
 | |
|         //--- DROPBITS(1) ---//
 | |
|         hold >>>= 1;
 | |
|         bits -= 1;
 | |
|         //---//
 | |
| 
 | |
|         switch ((hold & 0x03)/*BITS(2)*/) {
 | |
|           case 0:                             /* stored block */
 | |
|             //Tracev((stderr, "inflate:     stored block%s\n",
 | |
|             //        state.last ? " (last)" : ""));
 | |
|             state.mode = STORED;
 | |
|             break;
 | |
|           case 1:                             /* fixed block */
 | |
|             fixedtables(state);
 | |
|             //Tracev((stderr, "inflate:     fixed codes block%s\n",
 | |
|             //        state.last ? " (last)" : ""));
 | |
|             state.mode = LEN_;             /* decode codes */
 | |
|             if (flush === Z_TREES) {
 | |
|               //--- DROPBITS(2) ---//
 | |
|               hold >>>= 2;
 | |
|               bits -= 2;
 | |
|               //---//
 | |
|               break inf_leave;
 | |
|             }
 | |
|             break;
 | |
|           case 2:                             /* dynamic block */
 | |
|             //Tracev((stderr, "inflate:     dynamic codes block%s\n",
 | |
|             //        state.last ? " (last)" : ""));
 | |
|             state.mode = TABLE;
 | |
|             break;
 | |
|           case 3:
 | |
|             strm.msg = 'invalid block type';
 | |
|             state.mode = BAD;
 | |
|         }
 | |
|         //--- DROPBITS(2) ---//
 | |
|         hold >>>= 2;
 | |
|         bits -= 2;
 | |
|         //---//
 | |
|         break;
 | |
|       case STORED:
 | |
|         //--- BYTEBITS() ---// /* go to byte boundary */
 | |
|         hold >>>= bits & 7;
 | |
|         bits -= bits & 7;
 | |
|         //---//
 | |
|         //=== NEEDBITS(32); */
 | |
|         while (bits < 32) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|         }
 | |
|         //===//
 | |
|         if ((hold & 0xffff) !== ((hold >>> 16) ^ 0xffff)) {
 | |
|           strm.msg = 'invalid stored block lengths';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         state.length = hold & 0xffff;
 | |
|         //Tracev((stderr, "inflate:       stored length %u\n",
 | |
|         //        state.length));
 | |
|         //=== INITBITS();
 | |
|         hold = 0;
 | |
|         bits = 0;
 | |
|         //===//
 | |
|         state.mode = COPY_;
 | |
|         if (flush === Z_TREES) { break inf_leave; }
 | |
|         /* falls through */
 | |
|       case COPY_:
 | |
|         state.mode = COPY;
 | |
|         /* falls through */
 | |
|       case COPY:
 | |
|         copy = state.length;
 | |
|         if (copy) {
 | |
|           if (copy > have) { copy = have; }
 | |
|           if (copy > left) { copy = left; }
 | |
|           if (copy === 0) { break inf_leave; }
 | |
|           //--- zmemcpy(put, next, copy); ---
 | |
|           utils.arraySet(output, input, next, copy, put);
 | |
|           //---//
 | |
|           have -= copy;
 | |
|           next += copy;
 | |
|           left -= copy;
 | |
|           put += copy;
 | |
|           state.length -= copy;
 | |
|           break;
 | |
|         }
 | |
|         //Tracev((stderr, "inflate:       stored end\n"));
 | |
|         state.mode = TYPE;
 | |
|         break;
 | |
|       case TABLE:
 | |
|         //=== NEEDBITS(14); */
 | |
|         while (bits < 14) {
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|         }
 | |
|         //===//
 | |
|         state.nlen = (hold & 0x1f)/*BITS(5)*/ + 257;
 | |
|         //--- DROPBITS(5) ---//
 | |
|         hold >>>= 5;
 | |
|         bits -= 5;
 | |
|         //---//
 | |
|         state.ndist = (hold & 0x1f)/*BITS(5)*/ + 1;
 | |
|         //--- DROPBITS(5) ---//
 | |
|         hold >>>= 5;
 | |
|         bits -= 5;
 | |
|         //---//
 | |
|         state.ncode = (hold & 0x0f)/*BITS(4)*/ + 4;
 | |
|         //--- DROPBITS(4) ---//
 | |
|         hold >>>= 4;
 | |
|         bits -= 4;
 | |
|         //---//
 | |
| //#ifndef PKZIP_BUG_WORKAROUND
 | |
|         if (state.nlen > 286 || state.ndist > 30) {
 | |
|           strm.msg = 'too many length or distance symbols';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
| //#endif
 | |
|         //Tracev((stderr, "inflate:       table sizes ok\n"));
 | |
|         state.have = 0;
 | |
|         state.mode = LENLENS;
 | |
|         /* falls through */
 | |
|       case LENLENS:
 | |
|         while (state.have < state.ncode) {
 | |
|           //=== NEEDBITS(3);
 | |
|           while (bits < 3) {
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             hold += input[next++] << bits;
 | |
|             bits += 8;
 | |
|           }
 | |
|           //===//
 | |
|           state.lens[order[state.have++]] = (hold & 0x07);//BITS(3);
 | |
|           //--- DROPBITS(3) ---//
 | |
|           hold >>>= 3;
 | |
|           bits -= 3;
 | |
|           //---//
 | |
|         }
 | |
|         while (state.have < 19) {
 | |
|           state.lens[order[state.have++]] = 0;
 | |
|         }
 | |
|         // We have separate tables & no pointers. 2 commented lines below not needed.
 | |
|         //state.next = state.codes;
 | |
|         //state.lencode = state.next;
 | |
|         // Switch to use dynamic table
 | |
|         state.lencode = state.lendyn;
 | |
|         state.lenbits = 7;
 | |
| 
 | |
|         opts = { bits: state.lenbits };
 | |
|         ret = inflate_table(CODES, state.lens, 0, 19, state.lencode, 0, state.work, opts);
 | |
|         state.lenbits = opts.bits;
 | |
| 
 | |
|         if (ret) {
 | |
|           strm.msg = 'invalid code lengths set';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         //Tracev((stderr, "inflate:       code lengths ok\n"));
 | |
|         state.have = 0;
 | |
|         state.mode = CODELENS;
 | |
|         /* falls through */
 | |
|       case CODELENS:
 | |
|         while (state.have < state.nlen + state.ndist) {
 | |
|           for (;;) {
 | |
|             here = state.lencode[hold & ((1 << state.lenbits) - 1)];/*BITS(state.lenbits)*/
 | |
|             here_bits = here >>> 24;
 | |
|             here_op = (here >>> 16) & 0xff;
 | |
|             here_val = here & 0xffff;
 | |
| 
 | |
|             if ((here_bits) <= bits) { break; }
 | |
|             //--- PULLBYTE() ---//
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             hold += input[next++] << bits;
 | |
|             bits += 8;
 | |
|             //---//
 | |
|           }
 | |
|           if (here_val < 16) {
 | |
|             //--- DROPBITS(here.bits) ---//
 | |
|             hold >>>= here_bits;
 | |
|             bits -= here_bits;
 | |
|             //---//
 | |
|             state.lens[state.have++] = here_val;
 | |
|           }
 | |
|           else {
 | |
|             if (here_val === 16) {
 | |
|               //=== NEEDBITS(here.bits + 2);
 | |
|               n = here_bits + 2;
 | |
|               while (bits < n) {
 | |
|                 if (have === 0) { break inf_leave; }
 | |
|                 have--;
 | |
|                 hold += input[next++] << bits;
 | |
|                 bits += 8;
 | |
|               }
 | |
|               //===//
 | |
|               //--- DROPBITS(here.bits) ---//
 | |
|               hold >>>= here_bits;
 | |
|               bits -= here_bits;
 | |
|               //---//
 | |
|               if (state.have === 0) {
 | |
|                 strm.msg = 'invalid bit length repeat';
 | |
|                 state.mode = BAD;
 | |
|                 break;
 | |
|               }
 | |
|               len = state.lens[state.have - 1];
 | |
|               copy = 3 + (hold & 0x03);//BITS(2);
 | |
|               //--- DROPBITS(2) ---//
 | |
|               hold >>>= 2;
 | |
|               bits -= 2;
 | |
|               //---//
 | |
|             }
 | |
|             else if (here_val === 17) {
 | |
|               //=== NEEDBITS(here.bits + 3);
 | |
|               n = here_bits + 3;
 | |
|               while (bits < n) {
 | |
|                 if (have === 0) { break inf_leave; }
 | |
|                 have--;
 | |
|                 hold += input[next++] << bits;
 | |
|                 bits += 8;
 | |
|               }
 | |
|               //===//
 | |
|               //--- DROPBITS(here.bits) ---//
 | |
|               hold >>>= here_bits;
 | |
|               bits -= here_bits;
 | |
|               //---//
 | |
|               len = 0;
 | |
|               copy = 3 + (hold & 0x07);//BITS(3);
 | |
|               //--- DROPBITS(3) ---//
 | |
|               hold >>>= 3;
 | |
|               bits -= 3;
 | |
|               //---//
 | |
|             }
 | |
|             else {
 | |
|               //=== NEEDBITS(here.bits + 7);
 | |
|               n = here_bits + 7;
 | |
|               while (bits < n) {
 | |
|                 if (have === 0) { break inf_leave; }
 | |
|                 have--;
 | |
|                 hold += input[next++] << bits;
 | |
|                 bits += 8;
 | |
|               }
 | |
|               //===//
 | |
|               //--- DROPBITS(here.bits) ---//
 | |
|               hold >>>= here_bits;
 | |
|               bits -= here_bits;
 | |
|               //---//
 | |
|               len = 0;
 | |
|               copy = 11 + (hold & 0x7f);//BITS(7);
 | |
|               //--- DROPBITS(7) ---//
 | |
|               hold >>>= 7;
 | |
|               bits -= 7;
 | |
|               //---//
 | |
|             }
 | |
|             if (state.have + copy > state.nlen + state.ndist) {
 | |
|               strm.msg = 'invalid bit length repeat';
 | |
|               state.mode = BAD;
 | |
|               break;
 | |
|             }
 | |
|             while (copy--) {
 | |
|               state.lens[state.have++] = len;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         /* handle error breaks in while */
 | |
|         if (state.mode === BAD) { break; }
 | |
| 
 | |
|         /* check for end-of-block code (better have one) */
 | |
|         if (state.lens[256] === 0) {
 | |
|           strm.msg = 'invalid code -- missing end-of-block';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         /* build code tables -- note: do not change the lenbits or distbits
 | |
|            values here (9 and 6) without reading the comments in inftrees.h
 | |
|            concerning the ENOUGH constants, which depend on those values */
 | |
|         state.lenbits = 9;
 | |
| 
 | |
|         opts = { bits: state.lenbits };
 | |
|         ret = inflate_table(LENS, state.lens, 0, state.nlen, state.lencode, 0, state.work, opts);
 | |
|         // We have separate tables & no pointers. 2 commented lines below not needed.
 | |
|         // state.next_index = opts.table_index;
 | |
|         state.lenbits = opts.bits;
 | |
|         // state.lencode = state.next;
 | |
| 
 | |
|         if (ret) {
 | |
|           strm.msg = 'invalid literal/lengths set';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         state.distbits = 6;
 | |
|         //state.distcode.copy(state.codes);
 | |
|         // Switch to use dynamic table
 | |
|         state.distcode = state.distdyn;
 | |
|         opts = { bits: state.distbits };
 | |
|         ret = inflate_table(DISTS, state.lens, state.nlen, state.ndist, state.distcode, 0, state.work, opts);
 | |
|         // We have separate tables & no pointers. 2 commented lines below not needed.
 | |
|         // state.next_index = opts.table_index;
 | |
|         state.distbits = opts.bits;
 | |
|         // state.distcode = state.next;
 | |
| 
 | |
|         if (ret) {
 | |
|           strm.msg = 'invalid distances set';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         //Tracev((stderr, 'inflate:       codes ok\n'));
 | |
|         state.mode = LEN_;
 | |
|         if (flush === Z_TREES) { break inf_leave; }
 | |
|         /* falls through */
 | |
|       case LEN_:
 | |
|         state.mode = LEN;
 | |
|         /* falls through */
 | |
|       case LEN:
 | |
|         if (have >= 6 && left >= 258) {
 | |
|           //--- RESTORE() ---
 | |
|           strm.next_out = put;
 | |
|           strm.avail_out = left;
 | |
|           strm.next_in = next;
 | |
|           strm.avail_in = have;
 | |
|           state.hold = hold;
 | |
|           state.bits = bits;
 | |
|           //---
 | |
|           inflate_fast(strm, _out);
 | |
|           //--- LOAD() ---
 | |
|           put = strm.next_out;
 | |
|           output = strm.output;
 | |
|           left = strm.avail_out;
 | |
|           next = strm.next_in;
 | |
|           input = strm.input;
 | |
|           have = strm.avail_in;
 | |
|           hold = state.hold;
 | |
|           bits = state.bits;
 | |
|           //---
 | |
| 
 | |
|           if (state.mode === TYPE) {
 | |
|             state.back = -1;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|         state.back = 0;
 | |
|         for (;;) {
 | |
|           here = state.lencode[hold & ((1 << state.lenbits) - 1)];  /*BITS(state.lenbits)*/
 | |
|           here_bits = here >>> 24;
 | |
|           here_op = (here >>> 16) & 0xff;
 | |
|           here_val = here & 0xffff;
 | |
| 
 | |
|           if (here_bits <= bits) { break; }
 | |
|           //--- PULLBYTE() ---//
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|           //---//
 | |
|         }
 | |
|         if (here_op && (here_op & 0xf0) === 0) {
 | |
|           last_bits = here_bits;
 | |
|           last_op = here_op;
 | |
|           last_val = here_val;
 | |
|           for (;;) {
 | |
|             here = state.lencode[last_val +
 | |
|                     ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
 | |
|             here_bits = here >>> 24;
 | |
|             here_op = (here >>> 16) & 0xff;
 | |
|             here_val = here & 0xffff;
 | |
| 
 | |
|             if ((last_bits + here_bits) <= bits) { break; }
 | |
|             //--- PULLBYTE() ---//
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             hold += input[next++] << bits;
 | |
|             bits += 8;
 | |
|             //---//
 | |
|           }
 | |
|           //--- DROPBITS(last.bits) ---//
 | |
|           hold >>>= last_bits;
 | |
|           bits -= last_bits;
 | |
|           //---//
 | |
|           state.back += last_bits;
 | |
|         }
 | |
|         //--- DROPBITS(here.bits) ---//
 | |
|         hold >>>= here_bits;
 | |
|         bits -= here_bits;
 | |
|         //---//
 | |
|         state.back += here_bits;
 | |
|         state.length = here_val;
 | |
|         if (here_op === 0) {
 | |
|           //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
 | |
|           //        "inflate:         literal '%c'\n" :
 | |
|           //        "inflate:         literal 0x%02x\n", here.val));
 | |
|           state.mode = LIT;
 | |
|           break;
 | |
|         }
 | |
|         if (here_op & 32) {
 | |
|           //Tracevv((stderr, "inflate:         end of block\n"));
 | |
|           state.back = -1;
 | |
|           state.mode = TYPE;
 | |
|           break;
 | |
|         }
 | |
|         if (here_op & 64) {
 | |
|           strm.msg = 'invalid literal/length code';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         state.extra = here_op & 15;
 | |
|         state.mode = LENEXT;
 | |
|         /* falls through */
 | |
|       case LENEXT:
 | |
|         if (state.extra) {
 | |
|           //=== NEEDBITS(state.extra);
 | |
|           n = state.extra;
 | |
|           while (bits < n) {
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             hold += input[next++] << bits;
 | |
|             bits += 8;
 | |
|           }
 | |
|           //===//
 | |
|           state.length += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
 | |
|           //--- DROPBITS(state.extra) ---//
 | |
|           hold >>>= state.extra;
 | |
|           bits -= state.extra;
 | |
|           //---//
 | |
|           state.back += state.extra;
 | |
|         }
 | |
|         //Tracevv((stderr, "inflate:         length %u\n", state.length));
 | |
|         state.was = state.length;
 | |
|         state.mode = DIST;
 | |
|         /* falls through */
 | |
|       case DIST:
 | |
|         for (;;) {
 | |
|           here = state.distcode[hold & ((1 << state.distbits) - 1)];/*BITS(state.distbits)*/
 | |
|           here_bits = here >>> 24;
 | |
|           here_op = (here >>> 16) & 0xff;
 | |
|           here_val = here & 0xffff;
 | |
| 
 | |
|           if ((here_bits) <= bits) { break; }
 | |
|           //--- PULLBYTE() ---//
 | |
|           if (have === 0) { break inf_leave; }
 | |
|           have--;
 | |
|           hold += input[next++] << bits;
 | |
|           bits += 8;
 | |
|           //---//
 | |
|         }
 | |
|         if ((here_op & 0xf0) === 0) {
 | |
|           last_bits = here_bits;
 | |
|           last_op = here_op;
 | |
|           last_val = here_val;
 | |
|           for (;;) {
 | |
|             here = state.distcode[last_val +
 | |
|                     ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
 | |
|             here_bits = here >>> 24;
 | |
|             here_op = (here >>> 16) & 0xff;
 | |
|             here_val = here & 0xffff;
 | |
| 
 | |
|             if ((last_bits + here_bits) <= bits) { break; }
 | |
|             //--- PULLBYTE() ---//
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             hold += input[next++] << bits;
 | |
|             bits += 8;
 | |
|             //---//
 | |
|           }
 | |
|           //--- DROPBITS(last.bits) ---//
 | |
|           hold >>>= last_bits;
 | |
|           bits -= last_bits;
 | |
|           //---//
 | |
|           state.back += last_bits;
 | |
|         }
 | |
|         //--- DROPBITS(here.bits) ---//
 | |
|         hold >>>= here_bits;
 | |
|         bits -= here_bits;
 | |
|         //---//
 | |
|         state.back += here_bits;
 | |
|         if (here_op & 64) {
 | |
|           strm.msg = 'invalid distance code';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
|         state.offset = here_val;
 | |
|         state.extra = (here_op) & 15;
 | |
|         state.mode = DISTEXT;
 | |
|         /* falls through */
 | |
|       case DISTEXT:
 | |
|         if (state.extra) {
 | |
|           //=== NEEDBITS(state.extra);
 | |
|           n = state.extra;
 | |
|           while (bits < n) {
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             hold += input[next++] << bits;
 | |
|             bits += 8;
 | |
|           }
 | |
|           //===//
 | |
|           state.offset += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
 | |
|           //--- DROPBITS(state.extra) ---//
 | |
|           hold >>>= state.extra;
 | |
|           bits -= state.extra;
 | |
|           //---//
 | |
|           state.back += state.extra;
 | |
|         }
 | |
| //#ifdef INFLATE_STRICT
 | |
|         if (state.offset > state.dmax) {
 | |
|           strm.msg = 'invalid distance too far back';
 | |
|           state.mode = BAD;
 | |
|           break;
 | |
|         }
 | |
| //#endif
 | |
|         //Tracevv((stderr, "inflate:         distance %u\n", state.offset));
 | |
|         state.mode = MATCH;
 | |
|         /* falls through */
 | |
|       case MATCH:
 | |
|         if (left === 0) { break inf_leave; }
 | |
|         copy = _out - left;
 | |
|         if (state.offset > copy) {         /* copy from window */
 | |
|           copy = state.offset - copy;
 | |
|           if (copy > state.whave) {
 | |
|             if (state.sane) {
 | |
|               strm.msg = 'invalid distance too far back';
 | |
|               state.mode = BAD;
 | |
|               break;
 | |
|             }
 | |
| // (!) This block is disabled in zlib defaults,
 | |
| // don't enable it for binary compatibility
 | |
| //#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
 | |
| //          Trace((stderr, "inflate.c too far\n"));
 | |
| //          copy -= state.whave;
 | |
| //          if (copy > state.length) { copy = state.length; }
 | |
| //          if (copy > left) { copy = left; }
 | |
| //          left -= copy;
 | |
| //          state.length -= copy;
 | |
| //          do {
 | |
| //            output[put++] = 0;
 | |
| //          } while (--copy);
 | |
| //          if (state.length === 0) { state.mode = LEN; }
 | |
| //          break;
 | |
| //#endif
 | |
|           }
 | |
|           if (copy > state.wnext) {
 | |
|             copy -= state.wnext;
 | |
|             from = state.wsize - copy;
 | |
|           }
 | |
|           else {
 | |
|             from = state.wnext - copy;
 | |
|           }
 | |
|           if (copy > state.length) { copy = state.length; }
 | |
|           from_source = state.window;
 | |
|         }
 | |
|         else {                              /* copy from output */
 | |
|           from_source = output;
 | |
|           from = put - state.offset;
 | |
|           copy = state.length;
 | |
|         }
 | |
|         if (copy > left) { copy = left; }
 | |
|         left -= copy;
 | |
|         state.length -= copy;
 | |
|         do {
 | |
|           output[put++] = from_source[from++];
 | |
|         } while (--copy);
 | |
|         if (state.length === 0) { state.mode = LEN; }
 | |
|         break;
 | |
|       case LIT:
 | |
|         if (left === 0) { break inf_leave; }
 | |
|         output[put++] = state.length;
 | |
|         left--;
 | |
|         state.mode = LEN;
 | |
|         break;
 | |
|       case CHECK:
 | |
|         if (state.wrap) {
 | |
|           //=== NEEDBITS(32);
 | |
|           while (bits < 32) {
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             // Use '|' instead of '+' to make sure that result is signed
 | |
|             hold |= input[next++] << bits;
 | |
|             bits += 8;
 | |
|           }
 | |
|           //===//
 | |
|           _out -= left;
 | |
|           strm.total_out += _out;
 | |
|           state.total += _out;
 | |
|           if (_out) {
 | |
|             strm.adler = state.check =
 | |
|                 /*UPDATE(state.check, put - _out, _out);*/
 | |
|                 (state.flags ? crc32(state.check, output, _out, put - _out) : adler32(state.check, output, _out, put - _out));
 | |
| 
 | |
|           }
 | |
|           _out = left;
 | |
|           // NB: crc32 stored as signed 32-bit int, zswap32 returns signed too
 | |
|           if ((state.flags ? hold : zswap32(hold)) !== state.check) {
 | |
|             strm.msg = 'incorrect data check';
 | |
|             state.mode = BAD;
 | |
|             break;
 | |
|           }
 | |
|           //=== INITBITS();
 | |
|           hold = 0;
 | |
|           bits = 0;
 | |
|           //===//
 | |
|           //Tracev((stderr, "inflate:   check matches trailer\n"));
 | |
|         }
 | |
|         state.mode = LENGTH;
 | |
|         /* falls through */
 | |
|       case LENGTH:
 | |
|         if (state.wrap && state.flags) {
 | |
|           //=== NEEDBITS(32);
 | |
|           while (bits < 32) {
 | |
|             if (have === 0) { break inf_leave; }
 | |
|             have--;
 | |
|             hold += input[next++] << bits;
 | |
|             bits += 8;
 | |
|           }
 | |
|           //===//
 | |
|           if (hold !== (state.total & 0xffffffff)) {
 | |
|             strm.msg = 'incorrect length check';
 | |
|             state.mode = BAD;
 | |
|             break;
 | |
|           }
 | |
|           //=== INITBITS();
 | |
|           hold = 0;
 | |
|           bits = 0;
 | |
|           //===//
 | |
|           //Tracev((stderr, "inflate:   length matches trailer\n"));
 | |
|         }
 | |
|         state.mode = DONE;
 | |
|         /* falls through */
 | |
|       case DONE:
 | |
|         ret = Z_STREAM_END;
 | |
|         break inf_leave;
 | |
|       case BAD:
 | |
|         ret = Z_DATA_ERROR;
 | |
|         break inf_leave;
 | |
|       case MEM:
 | |
|         return Z_MEM_ERROR;
 | |
|       case SYNC:
 | |
|         /* falls through */
 | |
|       default:
 | |
|         return Z_STREAM_ERROR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // inf_leave <- here is real place for "goto inf_leave", emulated via "break inf_leave"
 | |
| 
 | |
|   /*
 | |
|      Return from inflate(), updating the total counts and the check value.
 | |
|      If there was no progress during the inflate() call, return a buffer
 | |
|      error.  Call updatewindow() to create and/or update the window state.
 | |
|      Note: a memory error from inflate() is non-recoverable.
 | |
|    */
 | |
| 
 | |
|   //--- RESTORE() ---
 | |
|   strm.next_out = put;
 | |
|   strm.avail_out = left;
 | |
|   strm.next_in = next;
 | |
|   strm.avail_in = have;
 | |
|   state.hold = hold;
 | |
|   state.bits = bits;
 | |
|   //---
 | |
| 
 | |
|   if (state.wsize || (_out !== strm.avail_out && state.mode < BAD &&
 | |
|                       (state.mode < CHECK || flush !== Z_FINISH))) {
 | |
|     if (updatewindow(strm, strm.output, strm.next_out, _out - strm.avail_out)) {
 | |
|       state.mode = MEM;
 | |
|       return Z_MEM_ERROR;
 | |
|     }
 | |
|   }
 | |
|   _in -= strm.avail_in;
 | |
|   _out -= strm.avail_out;
 | |
|   strm.total_in += _in;
 | |
|   strm.total_out += _out;
 | |
|   state.total += _out;
 | |
|   if (state.wrap && _out) {
 | |
|     strm.adler = state.check = /*UPDATE(state.check, strm.next_out - _out, _out);*/
 | |
|       (state.flags ? crc32(state.check, output, _out, strm.next_out - _out) : adler32(state.check, output, _out, strm.next_out - _out));
 | |
|   }
 | |
|   strm.data_type = state.bits + (state.last ? 64 : 0) +
 | |
|                     (state.mode === TYPE ? 128 : 0) +
 | |
|                     (state.mode === LEN_ || state.mode === COPY_ ? 256 : 0);
 | |
|   if (((_in === 0 && _out === 0) || flush === Z_FINISH) && ret === Z_OK) {
 | |
|     ret = Z_BUF_ERROR;
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| function inflateEnd(strm) {
 | |
| 
 | |
|   if (!strm || !strm.state /*|| strm->zfree == (free_func)0*/) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   var state = strm.state;
 | |
|   if (state.window) {
 | |
|     state.window = null;
 | |
|   }
 | |
|   strm.state = null;
 | |
|   return Z_OK;
 | |
| }
 | |
| 
 | |
| function inflateGetHeader(strm, head) {
 | |
|   var state;
 | |
| 
 | |
|   /* check state */
 | |
|   if (!strm || !strm.state) { return Z_STREAM_ERROR; }
 | |
|   state = strm.state;
 | |
|   if ((state.wrap & 2) === 0) { return Z_STREAM_ERROR; }
 | |
| 
 | |
|   /* save header structure */
 | |
|   state.head = head;
 | |
|   head.done = false;
 | |
|   return Z_OK;
 | |
| }
 | |
| 
 | |
| function inflateSetDictionary(strm, dictionary) {
 | |
|   var dictLength = dictionary.length;
 | |
| 
 | |
|   var state;
 | |
|   var dictid;
 | |
|   var ret;
 | |
| 
 | |
|   /* check state */
 | |
|   if (!strm /* == Z_NULL */ || !strm.state /* == Z_NULL */) { return Z_STREAM_ERROR; }
 | |
|   state = strm.state;
 | |
| 
 | |
|   if (state.wrap !== 0 && state.mode !== DICT) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* check for correct dictionary identifier */
 | |
|   if (state.mode === DICT) {
 | |
|     dictid = 1; /* adler32(0, null, 0)*/
 | |
|     /* dictid = adler32(dictid, dictionary, dictLength); */
 | |
|     dictid = adler32(dictid, dictionary, dictLength, 0);
 | |
|     if (dictid !== state.check) {
 | |
|       return Z_DATA_ERROR;
 | |
|     }
 | |
|   }
 | |
|   /* copy dictionary to window using updatewindow(), which will amend the
 | |
|    existing dictionary if appropriate */
 | |
|   ret = updatewindow(strm, dictionary, dictLength, dictLength);
 | |
|   if (ret) {
 | |
|     state.mode = MEM;
 | |
|     return Z_MEM_ERROR;
 | |
|   }
 | |
|   state.havedict = 1;
 | |
|   // Tracev((stderr, "inflate:   dictionary set\n"));
 | |
|   return Z_OK;
 | |
| }
 | |
| 
 | |
| exports.inflateReset = inflateReset;
 | |
| exports.inflateReset2 = inflateReset2;
 | |
| exports.inflateResetKeep = inflateResetKeep;
 | |
| exports.inflateInit = inflateInit;
 | |
| exports.inflateInit2 = inflateInit2;
 | |
| exports.inflate = inflate;
 | |
| exports.inflateEnd = inflateEnd;
 | |
| exports.inflateGetHeader = inflateGetHeader;
 | |
| exports.inflateSetDictionary = inflateSetDictionary;
 | |
| exports.inflateInfo = 'pako inflate (from Nodeca project)';
 | |
| 
 | |
| /* Not implemented
 | |
| exports.inflateCopy = inflateCopy;
 | |
| exports.inflateGetDictionary = inflateGetDictionary;
 | |
| exports.inflateMark = inflateMark;
 | |
| exports.inflatePrime = inflatePrime;
 | |
| exports.inflateSync = inflateSync;
 | |
| exports.inflateSyncPoint = inflateSyncPoint;
 | |
| exports.inflateUndermine = inflateUndermine;
 | |
| */
 | |
| 
 | |
| },{"../utils/common":3,"./adler32":5,"./crc32":7,"./inffast":10,"./inftrees":12}],12:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| var utils = require('../utils/common');
 | |
| 
 | |
| var MAXBITS = 15;
 | |
| var ENOUGH_LENS = 852;
 | |
| var ENOUGH_DISTS = 592;
 | |
| //var ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS);
 | |
| 
 | |
| var CODES = 0;
 | |
| var LENS = 1;
 | |
| var DISTS = 2;
 | |
| 
 | |
| var lbase = [ /* Length codes 257..285 base */
 | |
|   3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
 | |
|   35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
 | |
| ];
 | |
| 
 | |
| var lext = [ /* Length codes 257..285 extra */
 | |
|   16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
 | |
|   19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78
 | |
| ];
 | |
| 
 | |
| var dbase = [ /* Distance codes 0..29 base */
 | |
|   1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
 | |
|   257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
 | |
|   8193, 12289, 16385, 24577, 0, 0
 | |
| ];
 | |
| 
 | |
| var dext = [ /* Distance codes 0..29 extra */
 | |
|   16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
 | |
|   23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
 | |
|   28, 28, 29, 29, 64, 64
 | |
| ];
 | |
| 
 | |
| module.exports = function inflate_table(type, lens, lens_index, codes, table, table_index, work, opts)
 | |
| {
 | |
|   var bits = opts.bits;
 | |
|       //here = opts.here; /* table entry for duplication */
 | |
| 
 | |
|   var len = 0;               /* a code's length in bits */
 | |
|   var sym = 0;               /* index of code symbols */
 | |
|   var min = 0, max = 0;          /* minimum and maximum code lengths */
 | |
|   var root = 0;              /* number of index bits for root table */
 | |
|   var curr = 0;              /* number of index bits for current table */
 | |
|   var drop = 0;              /* code bits to drop for sub-table */
 | |
|   var left = 0;                   /* number of prefix codes available */
 | |
|   var used = 0;              /* code entries in table used */
 | |
|   var huff = 0;              /* Huffman code */
 | |
|   var incr;              /* for incrementing code, index */
 | |
|   var fill;              /* index for replicating entries */
 | |
|   var low;               /* low bits for current root entry */
 | |
|   var mask;              /* mask for low root bits */
 | |
|   var next;             /* next available space in table */
 | |
|   var base = null;     /* base value table to use */
 | |
|   var base_index = 0;
 | |
| //  var shoextra;    /* extra bits table to use */
 | |
|   var end;                    /* use base and extra for symbol > end */
 | |
|   var count = new utils.Buf16(MAXBITS + 1); //[MAXBITS+1];    /* number of codes of each length */
 | |
|   var offs = new utils.Buf16(MAXBITS + 1); //[MAXBITS+1];     /* offsets in table for each length */
 | |
|   var extra = null;
 | |
|   var extra_index = 0;
 | |
| 
 | |
|   var here_bits, here_op, here_val;
 | |
| 
 | |
|   /*
 | |
|    Process a set of code lengths to create a canonical Huffman code.  The
 | |
|    code lengths are lens[0..codes-1].  Each length corresponds to the
 | |
|    symbols 0..codes-1.  The Huffman code is generated by first sorting the
 | |
|    symbols by length from short to long, and retaining the symbol order
 | |
|    for codes with equal lengths.  Then the code starts with all zero bits
 | |
|    for the first code of the shortest length, and the codes are integer
 | |
|    increments for the same length, and zeros are appended as the length
 | |
|    increases.  For the deflate format, these bits are stored backwards
 | |
|    from their more natural integer increment ordering, and so when the
 | |
|    decoding tables are built in the large loop below, the integer codes
 | |
|    are incremented backwards.
 | |
| 
 | |
|    This routine assumes, but does not check, that all of the entries in
 | |
|    lens[] are in the range 0..MAXBITS.  The caller must assure this.
 | |
|    1..MAXBITS is interpreted as that code length.  zero means that that
 | |
|    symbol does not occur in this code.
 | |
| 
 | |
|    The codes are sorted by computing a count of codes for each length,
 | |
|    creating from that a table of starting indices for each length in the
 | |
|    sorted table, and then entering the symbols in order in the sorted
 | |
|    table.  The sorted table is work[], with that space being provided by
 | |
|    the caller.
 | |
| 
 | |
|    The length counts are used for other purposes as well, i.e. finding
 | |
|    the minimum and maximum length codes, determining if there are any
 | |
|    codes at all, checking for a valid set of lengths, and looking ahead
 | |
|    at length counts to determine sub-table sizes when building the
 | |
|    decoding tables.
 | |
|    */
 | |
| 
 | |
|   /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
 | |
|   for (len = 0; len <= MAXBITS; len++) {
 | |
|     count[len] = 0;
 | |
|   }
 | |
|   for (sym = 0; sym < codes; sym++) {
 | |
|     count[lens[lens_index + sym]]++;
 | |
|   }
 | |
| 
 | |
|   /* bound code lengths, force root to be within code lengths */
 | |
|   root = bits;
 | |
|   for (max = MAXBITS; max >= 1; max--) {
 | |
|     if (count[max] !== 0) { break; }
 | |
|   }
 | |
|   if (root > max) {
 | |
|     root = max;
 | |
|   }
 | |
|   if (max === 0) {                     /* no symbols to code at all */
 | |
|     //table.op[opts.table_index] = 64;  //here.op = (var char)64;    /* invalid code marker */
 | |
|     //table.bits[opts.table_index] = 1;   //here.bits = (var char)1;
 | |
|     //table.val[opts.table_index++] = 0;   //here.val = (var short)0;
 | |
|     table[table_index++] = (1 << 24) | (64 << 16) | 0;
 | |
| 
 | |
| 
 | |
|     //table.op[opts.table_index] = 64;
 | |
|     //table.bits[opts.table_index] = 1;
 | |
|     //table.val[opts.table_index++] = 0;
 | |
|     table[table_index++] = (1 << 24) | (64 << 16) | 0;
 | |
| 
 | |
|     opts.bits = 1;
 | |
|     return 0;     /* no symbols, but wait for decoding to report error */
 | |
|   }
 | |
|   for (min = 1; min < max; min++) {
 | |
|     if (count[min] !== 0) { break; }
 | |
|   }
 | |
|   if (root < min) {
 | |
|     root = min;
 | |
|   }
 | |
| 
 | |
|   /* check for an over-subscribed or incomplete set of lengths */
 | |
|   left = 1;
 | |
|   for (len = 1; len <= MAXBITS; len++) {
 | |
|     left <<= 1;
 | |
|     left -= count[len];
 | |
|     if (left < 0) {
 | |
|       return -1;
 | |
|     }        /* over-subscribed */
 | |
|   }
 | |
|   if (left > 0 && (type === CODES || max !== 1)) {
 | |
|     return -1;                      /* incomplete set */
 | |
|   }
 | |
| 
 | |
|   /* generate offsets into symbol table for each length for sorting */
 | |
|   offs[1] = 0;
 | |
|   for (len = 1; len < MAXBITS; len++) {
 | |
|     offs[len + 1] = offs[len] + count[len];
 | |
|   }
 | |
| 
 | |
|   /* sort symbols by length, by symbol order within each length */
 | |
|   for (sym = 0; sym < codes; sym++) {
 | |
|     if (lens[lens_index + sym] !== 0) {
 | |
|       work[offs[lens[lens_index + sym]]++] = sym;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    Create and fill in decoding tables.  In this loop, the table being
 | |
|    filled is at next and has curr index bits.  The code being used is huff
 | |
|    with length len.  That code is converted to an index by dropping drop
 | |
|    bits off of the bottom.  For codes where len is less than drop + curr,
 | |
|    those top drop + curr - len bits are incremented through all values to
 | |
|    fill the table with replicated entries.
 | |
| 
 | |
|    root is the number of index bits for the root table.  When len exceeds
 | |
|    root, sub-tables are created pointed to by the root entry with an index
 | |
|    of the low root bits of huff.  This is saved in low to check for when a
 | |
|    new sub-table should be started.  drop is zero when the root table is
 | |
|    being filled, and drop is root when sub-tables are being filled.
 | |
| 
 | |
|    When a new sub-table is needed, it is necessary to look ahead in the
 | |
|    code lengths to determine what size sub-table is needed.  The length
 | |
|    counts are used for this, and so count[] is decremented as codes are
 | |
|    entered in the tables.
 | |
| 
 | |
|    used keeps track of how many table entries have been allocated from the
 | |
|    provided *table space.  It is checked for LENS and DIST tables against
 | |
|    the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
 | |
|    the initial root table size constants.  See the comments in inftrees.h
 | |
|    for more information.
 | |
| 
 | |
|    sym increments through all symbols, and the loop terminates when
 | |
|    all codes of length max, i.e. all codes, have been processed.  This
 | |
|    routine permits incomplete codes, so another loop after this one fills
 | |
|    in the rest of the decoding tables with invalid code markers.
 | |
|    */
 | |
| 
 | |
|   /* set up for code type */
 | |
|   // poor man optimization - use if-else instead of switch,
 | |
|   // to avoid deopts in old v8
 | |
|   if (type === CODES) {
 | |
|     base = extra = work;    /* dummy value--not used */
 | |
|     end = 19;
 | |
| 
 | |
|   } else if (type === LENS) {
 | |
|     base = lbase;
 | |
|     base_index -= 257;
 | |
|     extra = lext;
 | |
|     extra_index -= 257;
 | |
|     end = 256;
 | |
| 
 | |
|   } else {                    /* DISTS */
 | |
|     base = dbase;
 | |
|     extra = dext;
 | |
|     end = -1;
 | |
|   }
 | |
| 
 | |
|   /* initialize opts for loop */
 | |
|   huff = 0;                   /* starting code */
 | |
|   sym = 0;                    /* starting code symbol */
 | |
|   len = min;                  /* starting code length */
 | |
|   next = table_index;              /* current table to fill in */
 | |
|   curr = root;                /* current table index bits */
 | |
|   drop = 0;                   /* current bits to drop from code for index */
 | |
|   low = -1;                   /* trigger new sub-table when len > root */
 | |
|   used = 1 << root;          /* use root table entries */
 | |
|   mask = used - 1;            /* mask for comparing low */
 | |
| 
 | |
|   /* check available table space */
 | |
|   if ((type === LENS && used > ENOUGH_LENS) ||
 | |
|     (type === DISTS && used > ENOUGH_DISTS)) {
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   /* process all codes and make table entries */
 | |
|   for (;;) {
 | |
|     /* create table entry */
 | |
|     here_bits = len - drop;
 | |
|     if (work[sym] < end) {
 | |
|       here_op = 0;
 | |
|       here_val = work[sym];
 | |
|     }
 | |
|     else if (work[sym] > end) {
 | |
|       here_op = extra[extra_index + work[sym]];
 | |
|       here_val = base[base_index + work[sym]];
 | |
|     }
 | |
|     else {
 | |
|       here_op = 32 + 64;         /* end of block */
 | |
|       here_val = 0;
 | |
|     }
 | |
| 
 | |
|     /* replicate for those indices with low len bits equal to huff */
 | |
|     incr = 1 << (len - drop);
 | |
|     fill = 1 << curr;
 | |
|     min = fill;                 /* save offset to next table */
 | |
|     do {
 | |
|       fill -= incr;
 | |
|       table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0;
 | |
|     } while (fill !== 0);
 | |
| 
 | |
|     /* backwards increment the len-bit code huff */
 | |
|     incr = 1 << (len - 1);
 | |
|     while (huff & incr) {
 | |
|       incr >>= 1;
 | |
|     }
 | |
|     if (incr !== 0) {
 | |
|       huff &= incr - 1;
 | |
|       huff += incr;
 | |
|     } else {
 | |
|       huff = 0;
 | |
|     }
 | |
| 
 | |
|     /* go to next symbol, update count, len */
 | |
|     sym++;
 | |
|     if (--count[len] === 0) {
 | |
|       if (len === max) { break; }
 | |
|       len = lens[lens_index + work[sym]];
 | |
|     }
 | |
| 
 | |
|     /* create new sub-table if needed */
 | |
|     if (len > root && (huff & mask) !== low) {
 | |
|       /* if first time, transition to sub-tables */
 | |
|       if (drop === 0) {
 | |
|         drop = root;
 | |
|       }
 | |
| 
 | |
|       /* increment past last table */
 | |
|       next += min;            /* here min is 1 << curr */
 | |
| 
 | |
|       /* determine length of next table */
 | |
|       curr = len - drop;
 | |
|       left = 1 << curr;
 | |
|       while (curr + drop < max) {
 | |
|         left -= count[curr + drop];
 | |
|         if (left <= 0) { break; }
 | |
|         curr++;
 | |
|         left <<= 1;
 | |
|       }
 | |
| 
 | |
|       /* check for enough space */
 | |
|       used += 1 << curr;
 | |
|       if ((type === LENS && used > ENOUGH_LENS) ||
 | |
|         (type === DISTS && used > ENOUGH_DISTS)) {
 | |
|         return 1;
 | |
|       }
 | |
| 
 | |
|       /* point entry in root table to sub-table */
 | |
|       low = huff & mask;
 | |
|       /*table.op[low] = curr;
 | |
|       table.bits[low] = root;
 | |
|       table.val[low] = next - opts.table_index;*/
 | |
|       table[low] = (root << 24) | (curr << 16) | (next - table_index) |0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* fill in remaining table entry if code is incomplete (guaranteed to have
 | |
|    at most one remaining entry, since if the code is incomplete, the
 | |
|    maximum code length that was allowed to get this far is one bit) */
 | |
|   if (huff !== 0) {
 | |
|     //table.op[next + huff] = 64;            /* invalid code marker */
 | |
|     //table.bits[next + huff] = len - drop;
 | |
|     //table.val[next + huff] = 0;
 | |
|     table[next + huff] = ((len - drop) << 24) | (64 << 16) |0;
 | |
|   }
 | |
| 
 | |
|   /* set return parameters */
 | |
|   //opts.table_index += used;
 | |
|   opts.bits = root;
 | |
|   return 0;
 | |
| };
 | |
| 
 | |
| },{"../utils/common":3}],13:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| module.exports = {
 | |
|   2:      'need dictionary',     /* Z_NEED_DICT       2  */
 | |
|   1:      'stream end',          /* Z_STREAM_END      1  */
 | |
|   0:      '',                    /* Z_OK              0  */
 | |
|   '-1':   'file error',          /* Z_ERRNO         (-1) */
 | |
|   '-2':   'stream error',        /* Z_STREAM_ERROR  (-2) */
 | |
|   '-3':   'data error',          /* Z_DATA_ERROR    (-3) */
 | |
|   '-4':   'insufficient memory', /* Z_MEM_ERROR     (-4) */
 | |
|   '-5':   'buffer error',        /* Z_BUF_ERROR     (-5) */
 | |
|   '-6':   'incompatible version' /* Z_VERSION_ERROR (-6) */
 | |
| };
 | |
| 
 | |
| },{}],14:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| /* eslint-disable space-unary-ops */
 | |
| 
 | |
| var utils = require('../utils/common');
 | |
| 
 | |
| /* Public constants ==========================================================*/
 | |
| /* ===========================================================================*/
 | |
| 
 | |
| 
 | |
| //var Z_FILTERED          = 1;
 | |
| //var Z_HUFFMAN_ONLY      = 2;
 | |
| //var Z_RLE               = 3;
 | |
| var Z_FIXED               = 4;
 | |
| //var Z_DEFAULT_STRATEGY  = 0;
 | |
| 
 | |
| /* Possible values of the data_type field (though see inflate()) */
 | |
| var Z_BINARY              = 0;
 | |
| var Z_TEXT                = 1;
 | |
| //var Z_ASCII             = 1; // = Z_TEXT
 | |
| var Z_UNKNOWN             = 2;
 | |
| 
 | |
| /*============================================================================*/
 | |
| 
 | |
| 
 | |
| function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
 | |
| 
 | |
| // From zutil.h
 | |
| 
 | |
| var STORED_BLOCK = 0;
 | |
| var STATIC_TREES = 1;
 | |
| var DYN_TREES    = 2;
 | |
| /* The three kinds of block type */
 | |
| 
 | |
| var MIN_MATCH    = 3;
 | |
| var MAX_MATCH    = 258;
 | |
| /* The minimum and maximum match lengths */
 | |
| 
 | |
| // From deflate.h
 | |
| /* ===========================================================================
 | |
|  * Internal compression state.
 | |
|  */
 | |
| 
 | |
| var LENGTH_CODES  = 29;
 | |
| /* number of length codes, not counting the special END_BLOCK code */
 | |
| 
 | |
| var LITERALS      = 256;
 | |
| /* number of literal bytes 0..255 */
 | |
| 
 | |
| var L_CODES       = LITERALS + 1 + LENGTH_CODES;
 | |
| /* number of Literal or Length codes, including the END_BLOCK code */
 | |
| 
 | |
| var D_CODES       = 30;
 | |
| /* number of distance codes */
 | |
| 
 | |
| var BL_CODES      = 19;
 | |
| /* number of codes used to transfer the bit lengths */
 | |
| 
 | |
| var HEAP_SIZE     = 2 * L_CODES + 1;
 | |
| /* maximum heap size */
 | |
| 
 | |
| var MAX_BITS      = 15;
 | |
| /* All codes must not exceed MAX_BITS bits */
 | |
| 
 | |
| var Buf_size      = 16;
 | |
| /* size of bit buffer in bi_buf */
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Constants
 | |
|  */
 | |
| 
 | |
| var MAX_BL_BITS = 7;
 | |
| /* Bit length codes must not exceed MAX_BL_BITS bits */
 | |
| 
 | |
| var END_BLOCK   = 256;
 | |
| /* end of block literal code */
 | |
| 
 | |
| var REP_3_6     = 16;
 | |
| /* repeat previous bit length 3-6 times (2 bits of repeat count) */
 | |
| 
 | |
| var REPZ_3_10   = 17;
 | |
| /* repeat a zero length 3-10 times  (3 bits of repeat count) */
 | |
| 
 | |
| var REPZ_11_138 = 18;
 | |
| /* repeat a zero length 11-138 times  (7 bits of repeat count) */
 | |
| 
 | |
| /* eslint-disable comma-spacing,array-bracket-spacing */
 | |
| var extra_lbits =   /* extra bits for each length code */
 | |
|   [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];
 | |
| 
 | |
| var extra_dbits =   /* extra bits for each distance code */
 | |
|   [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];
 | |
| 
 | |
| var extra_blbits =  /* extra bits for each bit length code */
 | |
|   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];
 | |
| 
 | |
| var bl_order =
 | |
|   [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
 | |
| /* eslint-enable comma-spacing,array-bracket-spacing */
 | |
| 
 | |
| /* The lengths of the bit length codes are sent in order of decreasing
 | |
|  * probability, to avoid transmitting the lengths for unused bit length codes.
 | |
|  */
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Local data. These are initialized only once.
 | |
|  */
 | |
| 
 | |
| // We pre-fill arrays with 0 to avoid uninitialized gaps
 | |
| 
 | |
| var DIST_CODE_LEN = 512; /* see definition of array dist_code below */
 | |
| 
 | |
| // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
 | |
| var static_ltree  = new Array((L_CODES + 2) * 2);
 | |
| zero(static_ltree);
 | |
| /* The static literal tree. Since the bit lengths are imposed, there is no
 | |
|  * need for the L_CODES extra codes used during heap construction. However
 | |
|  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
 | |
|  * below).
 | |
|  */
 | |
| 
 | |
| var static_dtree  = new Array(D_CODES * 2);
 | |
| zero(static_dtree);
 | |
| /* The static distance tree. (Actually a trivial tree since all codes use
 | |
|  * 5 bits.)
 | |
|  */
 | |
| 
 | |
| var _dist_code    = new Array(DIST_CODE_LEN);
 | |
| zero(_dist_code);
 | |
| /* Distance codes. The first 256 values correspond to the distances
 | |
|  * 3 .. 258, the last 256 values correspond to the top 8 bits of
 | |
|  * the 15 bit distances.
 | |
|  */
 | |
| 
 | |
| var _length_code  = new Array(MAX_MATCH - MIN_MATCH + 1);
 | |
| zero(_length_code);
 | |
| /* length code for each normalized match length (0 == MIN_MATCH) */
 | |
| 
 | |
| var base_length   = new Array(LENGTH_CODES);
 | |
| zero(base_length);
 | |
| /* First normalized length for each code (0 = MIN_MATCH) */
 | |
| 
 | |
| var base_dist     = new Array(D_CODES);
 | |
| zero(base_dist);
 | |
| /* First normalized distance for each code (0 = distance of 1) */
 | |
| 
 | |
| 
 | |
| function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
 | |
| 
 | |
|   this.static_tree  = static_tree;  /* static tree or NULL */
 | |
|   this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */
 | |
|   this.extra_base   = extra_base;   /* base index for extra_bits */
 | |
|   this.elems        = elems;        /* max number of elements in the tree */
 | |
|   this.max_length   = max_length;   /* max bit length for the codes */
 | |
| 
 | |
|   // show if `static_tree` has data or dummy - needed for monomorphic objects
 | |
|   this.has_stree    = static_tree && static_tree.length;
 | |
| }
 | |
| 
 | |
| 
 | |
| var static_l_desc;
 | |
| var static_d_desc;
 | |
| var static_bl_desc;
 | |
| 
 | |
| 
 | |
| function TreeDesc(dyn_tree, stat_desc) {
 | |
|   this.dyn_tree = dyn_tree;     /* the dynamic tree */
 | |
|   this.max_code = 0;            /* largest code with non zero frequency */
 | |
|   this.stat_desc = stat_desc;   /* the corresponding static tree */
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| function d_code(dist) {
 | |
|   return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Output a short LSB first on the stream.
 | |
|  * IN assertion: there is enough room in pendingBuf.
 | |
|  */
 | |
| function put_short(s, w) {
 | |
| //    put_byte(s, (uch)((w) & 0xff));
 | |
| //    put_byte(s, (uch)((ush)(w) >> 8));
 | |
|   s.pending_buf[s.pending++] = (w) & 0xff;
 | |
|   s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send a value on a given number of bits.
 | |
|  * IN assertion: length <= 16 and value fits in length bits.
 | |
|  */
 | |
| function send_bits(s, value, length) {
 | |
|   if (s.bi_valid > (Buf_size - length)) {
 | |
|     s.bi_buf |= (value << s.bi_valid) & 0xffff;
 | |
|     put_short(s, s.bi_buf);
 | |
|     s.bi_buf = value >> (Buf_size - s.bi_valid);
 | |
|     s.bi_valid += length - Buf_size;
 | |
|   } else {
 | |
|     s.bi_buf |= (value << s.bi_valid) & 0xffff;
 | |
|     s.bi_valid += length;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| function send_code(s, c, tree) {
 | |
|   send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Reverse the first len bits of a code, using straightforward code (a faster
 | |
|  * method would use a table)
 | |
|  * IN assertion: 1 <= len <= 15
 | |
|  */
 | |
| function bi_reverse(code, len) {
 | |
|   var res = 0;
 | |
|   do {
 | |
|     res |= code & 1;
 | |
|     code >>>= 1;
 | |
|     res <<= 1;
 | |
|   } while (--len > 0);
 | |
|   return res >>> 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Flush the bit buffer, keeping at most 7 bits in it.
 | |
|  */
 | |
| function bi_flush(s) {
 | |
|   if (s.bi_valid === 16) {
 | |
|     put_short(s, s.bi_buf);
 | |
|     s.bi_buf = 0;
 | |
|     s.bi_valid = 0;
 | |
| 
 | |
|   } else if (s.bi_valid >= 8) {
 | |
|     s.pending_buf[s.pending++] = s.bi_buf & 0xff;
 | |
|     s.bi_buf >>= 8;
 | |
|     s.bi_valid -= 8;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Compute the optimal bit lengths for a tree and update the total bit length
 | |
|  * for the current block.
 | |
|  * IN assertion: the fields freq and dad are set, heap[heap_max] and
 | |
|  *    above are the tree nodes sorted by increasing frequency.
 | |
|  * OUT assertions: the field len is set to the optimal bit length, the
 | |
|  *     array bl_count contains the frequencies for each bit length.
 | |
|  *     The length opt_len is updated; static_len is also updated if stree is
 | |
|  *     not null.
 | |
|  */
 | |
| function gen_bitlen(s, desc)
 | |
| //    deflate_state *s;
 | |
| //    tree_desc *desc;    /* the tree descriptor */
 | |
| {
 | |
|   var tree            = desc.dyn_tree;
 | |
|   var max_code        = desc.max_code;
 | |
|   var stree           = desc.stat_desc.static_tree;
 | |
|   var has_stree       = desc.stat_desc.has_stree;
 | |
|   var extra           = desc.stat_desc.extra_bits;
 | |
|   var base            = desc.stat_desc.extra_base;
 | |
|   var max_length      = desc.stat_desc.max_length;
 | |
|   var h;              /* heap index */
 | |
|   var n, m;           /* iterate over the tree elements */
 | |
|   var bits;           /* bit length */
 | |
|   var xbits;          /* extra bits */
 | |
|   var f;              /* frequency */
 | |
|   var overflow = 0;   /* number of elements with bit length too large */
 | |
| 
 | |
|   for (bits = 0; bits <= MAX_BITS; bits++) {
 | |
|     s.bl_count[bits] = 0;
 | |
|   }
 | |
| 
 | |
|   /* In a first pass, compute the optimal bit lengths (which may
 | |
|    * overflow in the case of the bit length tree).
 | |
|    */
 | |
|   tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
 | |
| 
 | |
|   for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
 | |
|     n = s.heap[h];
 | |
|     bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
 | |
|     if (bits > max_length) {
 | |
|       bits = max_length;
 | |
|       overflow++;
 | |
|     }
 | |
|     tree[n * 2 + 1]/*.Len*/ = bits;
 | |
|     /* We overwrite tree[n].Dad which is no longer needed */
 | |
| 
 | |
|     if (n > max_code) { continue; } /* not a leaf node */
 | |
| 
 | |
|     s.bl_count[bits]++;
 | |
|     xbits = 0;
 | |
|     if (n >= base) {
 | |
|       xbits = extra[n - base];
 | |
|     }
 | |
|     f = tree[n * 2]/*.Freq*/;
 | |
|     s.opt_len += f * (bits + xbits);
 | |
|     if (has_stree) {
 | |
|       s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
 | |
|     }
 | |
|   }
 | |
|   if (overflow === 0) { return; }
 | |
| 
 | |
|   // Trace((stderr,"\nbit length overflow\n"));
 | |
|   /* This happens for example on obj2 and pic of the Calgary corpus */
 | |
| 
 | |
|   /* Find the first bit length which could increase: */
 | |
|   do {
 | |
|     bits = max_length - 1;
 | |
|     while (s.bl_count[bits] === 0) { bits--; }
 | |
|     s.bl_count[bits]--;      /* move one leaf down the tree */
 | |
|     s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
 | |
|     s.bl_count[max_length]--;
 | |
|     /* The brother of the overflow item also moves one step up,
 | |
|      * but this does not affect bl_count[max_length]
 | |
|      */
 | |
|     overflow -= 2;
 | |
|   } while (overflow > 0);
 | |
| 
 | |
|   /* Now recompute all bit lengths, scanning in increasing frequency.
 | |
|    * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 | |
|    * lengths instead of fixing only the wrong ones. This idea is taken
 | |
|    * from 'ar' written by Haruhiko Okumura.)
 | |
|    */
 | |
|   for (bits = max_length; bits !== 0; bits--) {
 | |
|     n = s.bl_count[bits];
 | |
|     while (n !== 0) {
 | |
|       m = s.heap[--h];
 | |
|       if (m > max_code) { continue; }
 | |
|       if (tree[m * 2 + 1]/*.Len*/ !== bits) {
 | |
|         // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 | |
|         s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
 | |
|         tree[m * 2 + 1]/*.Len*/ = bits;
 | |
|       }
 | |
|       n--;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Generate the codes for a given tree and bit counts (which need not be
 | |
|  * optimal).
 | |
|  * IN assertion: the array bl_count contains the bit length statistics for
 | |
|  * the given tree and the field len is set for all tree elements.
 | |
|  * OUT assertion: the field code is set for all tree elements of non
 | |
|  *     zero code length.
 | |
|  */
 | |
| function gen_codes(tree, max_code, bl_count)
 | |
| //    ct_data *tree;             /* the tree to decorate */
 | |
| //    int max_code;              /* largest code with non zero frequency */
 | |
| //    ushf *bl_count;            /* number of codes at each bit length */
 | |
| {
 | |
|   var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
 | |
|   var code = 0;              /* running code value */
 | |
|   var bits;                  /* bit index */
 | |
|   var n;                     /* code index */
 | |
| 
 | |
|   /* The distribution counts are first used to generate the code values
 | |
|    * without bit reversal.
 | |
|    */
 | |
|   for (bits = 1; bits <= MAX_BITS; bits++) {
 | |
|     next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
 | |
|   }
 | |
|   /* Check that the bit counts in bl_count are consistent. The last code
 | |
|    * must be all ones.
 | |
|    */
 | |
|   //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 | |
|   //        "inconsistent bit counts");
 | |
|   //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 | |
| 
 | |
|   for (n = 0;  n <= max_code; n++) {
 | |
|     var len = tree[n * 2 + 1]/*.Len*/;
 | |
|     if (len === 0) { continue; }
 | |
|     /* Now reverse the bits */
 | |
|     tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
 | |
| 
 | |
|     //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 | |
|     //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the various 'constant' tables.
 | |
|  */
 | |
| function tr_static_init() {
 | |
|   var n;        /* iterates over tree elements */
 | |
|   var bits;     /* bit counter */
 | |
|   var length;   /* length value */
 | |
|   var code;     /* code value */
 | |
|   var dist;     /* distance index */
 | |
|   var bl_count = new Array(MAX_BITS + 1);
 | |
|   /* number of codes at each bit length for an optimal tree */
 | |
| 
 | |
|   // do check in _tr_init()
 | |
|   //if (static_init_done) return;
 | |
| 
 | |
|   /* For some embedded targets, global variables are not initialized: */
 | |
| /*#ifdef NO_INIT_GLOBAL_POINTERS
 | |
|   static_l_desc.static_tree = static_ltree;
 | |
|   static_l_desc.extra_bits = extra_lbits;
 | |
|   static_d_desc.static_tree = static_dtree;
 | |
|   static_d_desc.extra_bits = extra_dbits;
 | |
|   static_bl_desc.extra_bits = extra_blbits;
 | |
| #endif*/
 | |
| 
 | |
|   /* Initialize the mapping length (0..255) -> length code (0..28) */
 | |
|   length = 0;
 | |
|   for (code = 0; code < LENGTH_CODES - 1; code++) {
 | |
|     base_length[code] = length;
 | |
|     for (n = 0; n < (1 << extra_lbits[code]); n++) {
 | |
|       _length_code[length++] = code;
 | |
|     }
 | |
|   }
 | |
|   //Assert (length == 256, "tr_static_init: length != 256");
 | |
|   /* Note that the length 255 (match length 258) can be represented
 | |
|    * in two different ways: code 284 + 5 bits or code 285, so we
 | |
|    * overwrite length_code[255] to use the best encoding:
 | |
|    */
 | |
|   _length_code[length - 1] = code;
 | |
| 
 | |
|   /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 | |
|   dist = 0;
 | |
|   for (code = 0; code < 16; code++) {
 | |
|     base_dist[code] = dist;
 | |
|     for (n = 0; n < (1 << extra_dbits[code]); n++) {
 | |
|       _dist_code[dist++] = code;
 | |
|     }
 | |
|   }
 | |
|   //Assert (dist == 256, "tr_static_init: dist != 256");
 | |
|   dist >>= 7; /* from now on, all distances are divided by 128 */
 | |
|   for (; code < D_CODES; code++) {
 | |
|     base_dist[code] = dist << 7;
 | |
|     for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
 | |
|       _dist_code[256 + dist++] = code;
 | |
|     }
 | |
|   }
 | |
|   //Assert (dist == 256, "tr_static_init: 256+dist != 512");
 | |
| 
 | |
|   /* Construct the codes of the static literal tree */
 | |
|   for (bits = 0; bits <= MAX_BITS; bits++) {
 | |
|     bl_count[bits] = 0;
 | |
|   }
 | |
| 
 | |
|   n = 0;
 | |
|   while (n <= 143) {
 | |
|     static_ltree[n * 2 + 1]/*.Len*/ = 8;
 | |
|     n++;
 | |
|     bl_count[8]++;
 | |
|   }
 | |
|   while (n <= 255) {
 | |
|     static_ltree[n * 2 + 1]/*.Len*/ = 9;
 | |
|     n++;
 | |
|     bl_count[9]++;
 | |
|   }
 | |
|   while (n <= 279) {
 | |
|     static_ltree[n * 2 + 1]/*.Len*/ = 7;
 | |
|     n++;
 | |
|     bl_count[7]++;
 | |
|   }
 | |
|   while (n <= 287) {
 | |
|     static_ltree[n * 2 + 1]/*.Len*/ = 8;
 | |
|     n++;
 | |
|     bl_count[8]++;
 | |
|   }
 | |
|   /* Codes 286 and 287 do not exist, but we must include them in the
 | |
|    * tree construction to get a canonical Huffman tree (longest code
 | |
|    * all ones)
 | |
|    */
 | |
|   gen_codes(static_ltree, L_CODES + 1, bl_count);
 | |
| 
 | |
|   /* The static distance tree is trivial: */
 | |
|   for (n = 0; n < D_CODES; n++) {
 | |
|     static_dtree[n * 2 + 1]/*.Len*/ = 5;
 | |
|     static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
 | |
|   }
 | |
| 
 | |
|   // Now data ready and we can init static trees
 | |
|   static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
 | |
|   static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS);
 | |
|   static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS);
 | |
| 
 | |
|   //static_init_done = true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize a new block.
 | |
|  */
 | |
| function init_block(s) {
 | |
|   var n; /* iterates over tree elements */
 | |
| 
 | |
|   /* Initialize the trees. */
 | |
|   for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
 | |
|   for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
 | |
|   for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
 | |
| 
 | |
|   s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
 | |
|   s.opt_len = s.static_len = 0;
 | |
|   s.last_lit = s.matches = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Flush the bit buffer and align the output on a byte boundary
 | |
|  */
 | |
| function bi_windup(s)
 | |
| {
 | |
|   if (s.bi_valid > 8) {
 | |
|     put_short(s, s.bi_buf);
 | |
|   } else if (s.bi_valid > 0) {
 | |
|     //put_byte(s, (Byte)s->bi_buf);
 | |
|     s.pending_buf[s.pending++] = s.bi_buf;
 | |
|   }
 | |
|   s.bi_buf = 0;
 | |
|   s.bi_valid = 0;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Copy a stored block, storing first the length and its
 | |
|  * one's complement if requested.
 | |
|  */
 | |
| function copy_block(s, buf, len, header)
 | |
| //DeflateState *s;
 | |
| //charf    *buf;    /* the input data */
 | |
| //unsigned len;     /* its length */
 | |
| //int      header;  /* true if block header must be written */
 | |
| {
 | |
|   bi_windup(s);        /* align on byte boundary */
 | |
| 
 | |
|   if (header) {
 | |
|     put_short(s, len);
 | |
|     put_short(s, ~len);
 | |
|   }
 | |
| //  while (len--) {
 | |
| //    put_byte(s, *buf++);
 | |
| //  }
 | |
|   utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
 | |
|   s.pending += len;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Compares to subtrees, using the tree depth as tie breaker when
 | |
|  * the subtrees have equal frequency. This minimizes the worst case length.
 | |
|  */
 | |
| function smaller(tree, n, m, depth) {
 | |
|   var _n2 = n * 2;
 | |
|   var _m2 = m * 2;
 | |
|   return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
 | |
|          (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Restore the heap property by moving down the tree starting at node k,
 | |
|  * exchanging a node with the smallest of its two sons if necessary, stopping
 | |
|  * when the heap property is re-established (each father smaller than its
 | |
|  * two sons).
 | |
|  */
 | |
| function pqdownheap(s, tree, k)
 | |
| //    deflate_state *s;
 | |
| //    ct_data *tree;  /* the tree to restore */
 | |
| //    int k;               /* node to move down */
 | |
| {
 | |
|   var v = s.heap[k];
 | |
|   var j = k << 1;  /* left son of k */
 | |
|   while (j <= s.heap_len) {
 | |
|     /* Set j to the smallest of the two sons: */
 | |
|     if (j < s.heap_len &&
 | |
|       smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
 | |
|       j++;
 | |
|     }
 | |
|     /* Exit if v is smaller than both sons */
 | |
|     if (smaller(tree, v, s.heap[j], s.depth)) { break; }
 | |
| 
 | |
|     /* Exchange v with the smallest son */
 | |
|     s.heap[k] = s.heap[j];
 | |
|     k = j;
 | |
| 
 | |
|     /* And continue down the tree, setting j to the left son of k */
 | |
|     j <<= 1;
 | |
|   }
 | |
|   s.heap[k] = v;
 | |
| }
 | |
| 
 | |
| 
 | |
| // inlined manually
 | |
| // var SMALLEST = 1;
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send the block data compressed using the given Huffman trees
 | |
|  */
 | |
| function compress_block(s, ltree, dtree)
 | |
| //    deflate_state *s;
 | |
| //    const ct_data *ltree; /* literal tree */
 | |
| //    const ct_data *dtree; /* distance tree */
 | |
| {
 | |
|   var dist;           /* distance of matched string */
 | |
|   var lc;             /* match length or unmatched char (if dist == 0) */
 | |
|   var lx = 0;         /* running index in l_buf */
 | |
|   var code;           /* the code to send */
 | |
|   var extra;          /* number of extra bits to send */
 | |
| 
 | |
|   if (s.last_lit !== 0) {
 | |
|     do {
 | |
|       dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
 | |
|       lc = s.pending_buf[s.l_buf + lx];
 | |
|       lx++;
 | |
| 
 | |
|       if (dist === 0) {
 | |
|         send_code(s, lc, ltree); /* send a literal byte */
 | |
|         //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 | |
|       } else {
 | |
|         /* Here, lc is the match length - MIN_MATCH */
 | |
|         code = _length_code[lc];
 | |
|         send_code(s, code + LITERALS + 1, ltree); /* send the length code */
 | |
|         extra = extra_lbits[code];
 | |
|         if (extra !== 0) {
 | |
|           lc -= base_length[code];
 | |
|           send_bits(s, lc, extra);       /* send the extra length bits */
 | |
|         }
 | |
|         dist--; /* dist is now the match distance - 1 */
 | |
|         code = d_code(dist);
 | |
|         //Assert (code < D_CODES, "bad d_code");
 | |
| 
 | |
|         send_code(s, code, dtree);       /* send the distance code */
 | |
|         extra = extra_dbits[code];
 | |
|         if (extra !== 0) {
 | |
|           dist -= base_dist[code];
 | |
|           send_bits(s, dist, extra);   /* send the extra distance bits */
 | |
|         }
 | |
|       } /* literal or match pair ? */
 | |
| 
 | |
|       /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
 | |
|       //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
 | |
|       //       "pendingBuf overflow");
 | |
| 
 | |
|     } while (lx < s.last_lit);
 | |
|   }
 | |
| 
 | |
|   send_code(s, END_BLOCK, ltree);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Construct one Huffman tree and assigns the code bit strings and lengths.
 | |
|  * Update the total bit length for the current block.
 | |
|  * IN assertion: the field freq is set for all tree elements.
 | |
|  * OUT assertions: the fields len and code are set to the optimal bit length
 | |
|  *     and corresponding code. The length opt_len is updated; static_len is
 | |
|  *     also updated if stree is not null. The field max_code is set.
 | |
|  */
 | |
| function build_tree(s, desc)
 | |
| //    deflate_state *s;
 | |
| //    tree_desc *desc; /* the tree descriptor */
 | |
| {
 | |
|   var tree     = desc.dyn_tree;
 | |
|   var stree    = desc.stat_desc.static_tree;
 | |
|   var has_stree = desc.stat_desc.has_stree;
 | |
|   var elems    = desc.stat_desc.elems;
 | |
|   var n, m;          /* iterate over heap elements */
 | |
|   var max_code = -1; /* largest code with non zero frequency */
 | |
|   var node;          /* new node being created */
 | |
| 
 | |
|   /* Construct the initial heap, with least frequent element in
 | |
|    * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 | |
|    * heap[0] is not used.
 | |
|    */
 | |
|   s.heap_len = 0;
 | |
|   s.heap_max = HEAP_SIZE;
 | |
| 
 | |
|   for (n = 0; n < elems; n++) {
 | |
|     if (tree[n * 2]/*.Freq*/ !== 0) {
 | |
|       s.heap[++s.heap_len] = max_code = n;
 | |
|       s.depth[n] = 0;
 | |
| 
 | |
|     } else {
 | |
|       tree[n * 2 + 1]/*.Len*/ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The pkzip format requires that at least one distance code exists,
 | |
|    * and that at least one bit should be sent even if there is only one
 | |
|    * possible code. So to avoid special checks later on we force at least
 | |
|    * two codes of non zero frequency.
 | |
|    */
 | |
|   while (s.heap_len < 2) {
 | |
|     node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
 | |
|     tree[node * 2]/*.Freq*/ = 1;
 | |
|     s.depth[node] = 0;
 | |
|     s.opt_len--;
 | |
| 
 | |
|     if (has_stree) {
 | |
|       s.static_len -= stree[node * 2 + 1]/*.Len*/;
 | |
|     }
 | |
|     /* node is 0 or 1 so it does not have extra bits */
 | |
|   }
 | |
|   desc.max_code = max_code;
 | |
| 
 | |
|   /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 | |
|    * establish sub-heaps of increasing lengths:
 | |
|    */
 | |
|   for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
 | |
| 
 | |
|   /* Construct the Huffman tree by repeatedly combining the least two
 | |
|    * frequent nodes.
 | |
|    */
 | |
|   node = elems;              /* next internal node of the tree */
 | |
|   do {
 | |
|     //pqremove(s, tree, n);  /* n = node of least frequency */
 | |
|     /*** pqremove ***/
 | |
|     n = s.heap[1/*SMALLEST*/];
 | |
|     s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
 | |
|     pqdownheap(s, tree, 1/*SMALLEST*/);
 | |
|     /***/
 | |
| 
 | |
|     m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
 | |
| 
 | |
|     s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
 | |
|     s.heap[--s.heap_max] = m;
 | |
| 
 | |
|     /* Create a new node father of n and m */
 | |
|     tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
 | |
|     s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
 | |
|     tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
 | |
| 
 | |
|     /* and insert the new node in the heap */
 | |
|     s.heap[1/*SMALLEST*/] = node++;
 | |
|     pqdownheap(s, tree, 1/*SMALLEST*/);
 | |
| 
 | |
|   } while (s.heap_len >= 2);
 | |
| 
 | |
|   s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
 | |
| 
 | |
|   /* At this point, the fields freq and dad are set. We can now
 | |
|    * generate the bit lengths.
 | |
|    */
 | |
|   gen_bitlen(s, desc);
 | |
| 
 | |
|   /* The field len is now set, we can generate the bit codes */
 | |
|   gen_codes(tree, max_code, s.bl_count);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Scan a literal or distance tree to determine the frequencies of the codes
 | |
|  * in the bit length tree.
 | |
|  */
 | |
| function scan_tree(s, tree, max_code)
 | |
| //    deflate_state *s;
 | |
| //    ct_data *tree;   /* the tree to be scanned */
 | |
| //    int max_code;    /* and its largest code of non zero frequency */
 | |
| {
 | |
|   var n;                     /* iterates over all tree elements */
 | |
|   var prevlen = -1;          /* last emitted length */
 | |
|   var curlen;                /* length of current code */
 | |
| 
 | |
|   var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
 | |
| 
 | |
|   var count = 0;             /* repeat count of the current code */
 | |
|   var max_count = 7;         /* max repeat count */
 | |
|   var min_count = 4;         /* min repeat count */
 | |
| 
 | |
|   if (nextlen === 0) {
 | |
|     max_count = 138;
 | |
|     min_count = 3;
 | |
|   }
 | |
|   tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
 | |
| 
 | |
|   for (n = 0; n <= max_code; n++) {
 | |
|     curlen = nextlen;
 | |
|     nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
 | |
| 
 | |
|     if (++count < max_count && curlen === nextlen) {
 | |
|       continue;
 | |
| 
 | |
|     } else if (count < min_count) {
 | |
|       s.bl_tree[curlen * 2]/*.Freq*/ += count;
 | |
| 
 | |
|     } else if (curlen !== 0) {
 | |
| 
 | |
|       if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
 | |
|       s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
 | |
| 
 | |
|     } else if (count <= 10) {
 | |
|       s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
 | |
| 
 | |
|     } else {
 | |
|       s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
 | |
|     }
 | |
| 
 | |
|     count = 0;
 | |
|     prevlen = curlen;
 | |
| 
 | |
|     if (nextlen === 0) {
 | |
|       max_count = 138;
 | |
|       min_count = 3;
 | |
| 
 | |
|     } else if (curlen === nextlen) {
 | |
|       max_count = 6;
 | |
|       min_count = 3;
 | |
| 
 | |
|     } else {
 | |
|       max_count = 7;
 | |
|       min_count = 4;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send a literal or distance tree in compressed form, using the codes in
 | |
|  * bl_tree.
 | |
|  */
 | |
| function send_tree(s, tree, max_code)
 | |
| //    deflate_state *s;
 | |
| //    ct_data *tree; /* the tree to be scanned */
 | |
| //    int max_code;       /* and its largest code of non zero frequency */
 | |
| {
 | |
|   var n;                     /* iterates over all tree elements */
 | |
|   var prevlen = -1;          /* last emitted length */
 | |
|   var curlen;                /* length of current code */
 | |
| 
 | |
|   var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
 | |
| 
 | |
|   var count = 0;             /* repeat count of the current code */
 | |
|   var max_count = 7;         /* max repeat count */
 | |
|   var min_count = 4;         /* min repeat count */
 | |
| 
 | |
|   /* tree[max_code+1].Len = -1; */  /* guard already set */
 | |
|   if (nextlen === 0) {
 | |
|     max_count = 138;
 | |
|     min_count = 3;
 | |
|   }
 | |
| 
 | |
|   for (n = 0; n <= max_code; n++) {
 | |
|     curlen = nextlen;
 | |
|     nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
 | |
| 
 | |
|     if (++count < max_count && curlen === nextlen) {
 | |
|       continue;
 | |
| 
 | |
|     } else if (count < min_count) {
 | |
|       do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
 | |
| 
 | |
|     } else if (curlen !== 0) {
 | |
|       if (curlen !== prevlen) {
 | |
|         send_code(s, curlen, s.bl_tree);
 | |
|         count--;
 | |
|       }
 | |
|       //Assert(count >= 3 && count <= 6, " 3_6?");
 | |
|       send_code(s, REP_3_6, s.bl_tree);
 | |
|       send_bits(s, count - 3, 2);
 | |
| 
 | |
|     } else if (count <= 10) {
 | |
|       send_code(s, REPZ_3_10, s.bl_tree);
 | |
|       send_bits(s, count - 3, 3);
 | |
| 
 | |
|     } else {
 | |
|       send_code(s, REPZ_11_138, s.bl_tree);
 | |
|       send_bits(s, count - 11, 7);
 | |
|     }
 | |
| 
 | |
|     count = 0;
 | |
|     prevlen = curlen;
 | |
|     if (nextlen === 0) {
 | |
|       max_count = 138;
 | |
|       min_count = 3;
 | |
| 
 | |
|     } else if (curlen === nextlen) {
 | |
|       max_count = 6;
 | |
|       min_count = 3;
 | |
| 
 | |
|     } else {
 | |
|       max_count = 7;
 | |
|       min_count = 4;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Construct the Huffman tree for the bit lengths and return the index in
 | |
|  * bl_order of the last bit length code to send.
 | |
|  */
 | |
| function build_bl_tree(s) {
 | |
|   var max_blindex;  /* index of last bit length code of non zero freq */
 | |
| 
 | |
|   /* Determine the bit length frequencies for literal and distance trees */
 | |
|   scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
 | |
|   scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
 | |
| 
 | |
|   /* Build the bit length tree: */
 | |
|   build_tree(s, s.bl_desc);
 | |
|   /* opt_len now includes the length of the tree representations, except
 | |
|    * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 | |
|    */
 | |
| 
 | |
|   /* Determine the number of bit length codes to send. The pkzip format
 | |
|    * requires that at least 4 bit length codes be sent. (appnote.txt says
 | |
|    * 3 but the actual value used is 4.)
 | |
|    */
 | |
|   for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
 | |
|     if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   /* Update opt_len to include the bit length tree and counts */
 | |
|   s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
 | |
|   //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 | |
|   //        s->opt_len, s->static_len));
 | |
| 
 | |
|   return max_blindex;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send the header for a block using dynamic Huffman trees: the counts, the
 | |
|  * lengths of the bit length codes, the literal tree and the distance tree.
 | |
|  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 | |
|  */
 | |
| function send_all_trees(s, lcodes, dcodes, blcodes)
 | |
| //    deflate_state *s;
 | |
| //    int lcodes, dcodes, blcodes; /* number of codes for each tree */
 | |
| {
 | |
|   var rank;                    /* index in bl_order */
 | |
| 
 | |
|   //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 | |
|   //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 | |
|   //        "too many codes");
 | |
|   //Tracev((stderr, "\nbl counts: "));
 | |
|   send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
 | |
|   send_bits(s, dcodes - 1,   5);
 | |
|   send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */
 | |
|   for (rank = 0; rank < blcodes; rank++) {
 | |
|     //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 | |
|     send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
 | |
|   }
 | |
|   //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 | |
| 
 | |
|   send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
 | |
|   //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 | |
| 
 | |
|   send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
 | |
|   //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Check if the data type is TEXT or BINARY, using the following algorithm:
 | |
|  * - TEXT if the two conditions below are satisfied:
 | |
|  *    a) There are no non-portable control characters belonging to the
 | |
|  *       "black list" (0..6, 14..25, 28..31).
 | |
|  *    b) There is at least one printable character belonging to the
 | |
|  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 | |
|  * - BINARY otherwise.
 | |
|  * - The following partially-portable control characters form a
 | |
|  *   "gray list" that is ignored in this detection algorithm:
 | |
|  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 | |
|  * IN assertion: the fields Freq of dyn_ltree are set.
 | |
|  */
 | |
| function detect_data_type(s) {
 | |
|   /* black_mask is the bit mask of black-listed bytes
 | |
|    * set bits 0..6, 14..25, and 28..31
 | |
|    * 0xf3ffc07f = binary 11110011111111111100000001111111
 | |
|    */
 | |
|   var black_mask = 0xf3ffc07f;
 | |
|   var n;
 | |
| 
 | |
|   /* Check for non-textual ("black-listed") bytes. */
 | |
|   for (n = 0; n <= 31; n++, black_mask >>>= 1) {
 | |
|     if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
 | |
|       return Z_BINARY;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Check for textual ("white-listed") bytes. */
 | |
|   if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
 | |
|       s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
 | |
|     return Z_TEXT;
 | |
|   }
 | |
|   for (n = 32; n < LITERALS; n++) {
 | |
|     if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
 | |
|       return Z_TEXT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* There are no "black-listed" or "white-listed" bytes:
 | |
|    * this stream either is empty or has tolerated ("gray-listed") bytes only.
 | |
|    */
 | |
|   return Z_BINARY;
 | |
| }
 | |
| 
 | |
| 
 | |
| var static_init_done = false;
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the tree data structures for a new zlib stream.
 | |
|  */
 | |
| function _tr_init(s)
 | |
| {
 | |
| 
 | |
|   if (!static_init_done) {
 | |
|     tr_static_init();
 | |
|     static_init_done = true;
 | |
|   }
 | |
| 
 | |
|   s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc);
 | |
|   s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc);
 | |
|   s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
 | |
| 
 | |
|   s.bi_buf = 0;
 | |
|   s.bi_valid = 0;
 | |
| 
 | |
|   /* Initialize the first block of the first file: */
 | |
|   init_block(s);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send a stored block
 | |
|  */
 | |
| function _tr_stored_block(s, buf, stored_len, last)
 | |
| //DeflateState *s;
 | |
| //charf *buf;       /* input block */
 | |
| //ulg stored_len;   /* length of input block */
 | |
| //int last;         /* one if this is the last block for a file */
 | |
| {
 | |
|   send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */
 | |
|   copy_block(s, buf, stored_len, true); /* with header */
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send one empty static block to give enough lookahead for inflate.
 | |
|  * This takes 10 bits, of which 7 may remain in the bit buffer.
 | |
|  */
 | |
| function _tr_align(s) {
 | |
|   send_bits(s, STATIC_TREES << 1, 3);
 | |
|   send_code(s, END_BLOCK, static_ltree);
 | |
|   bi_flush(s);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Determine the best encoding for the current block: dynamic trees, static
 | |
|  * trees or store, and output the encoded block to the zip file.
 | |
|  */
 | |
| function _tr_flush_block(s, buf, stored_len, last)
 | |
| //DeflateState *s;
 | |
| //charf *buf;       /* input block, or NULL if too old */
 | |
| //ulg stored_len;   /* length of input block */
 | |
| //int last;         /* one if this is the last block for a file */
 | |
| {
 | |
|   var opt_lenb, static_lenb;  /* opt_len and static_len in bytes */
 | |
|   var max_blindex = 0;        /* index of last bit length code of non zero freq */
 | |
| 
 | |
|   /* Build the Huffman trees unless a stored block is forced */
 | |
|   if (s.level > 0) {
 | |
| 
 | |
|     /* Check if the file is binary or text */
 | |
|     if (s.strm.data_type === Z_UNKNOWN) {
 | |
|       s.strm.data_type = detect_data_type(s);
 | |
|     }
 | |
| 
 | |
|     /* Construct the literal and distance trees */
 | |
|     build_tree(s, s.l_desc);
 | |
|     // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 | |
|     //        s->static_len));
 | |
| 
 | |
|     build_tree(s, s.d_desc);
 | |
|     // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 | |
|     //        s->static_len));
 | |
|     /* At this point, opt_len and static_len are the total bit lengths of
 | |
|      * the compressed block data, excluding the tree representations.
 | |
|      */
 | |
| 
 | |
|     /* Build the bit length tree for the above two trees, and get the index
 | |
|      * in bl_order of the last bit length code to send.
 | |
|      */
 | |
|     max_blindex = build_bl_tree(s);
 | |
| 
 | |
|     /* Determine the best encoding. Compute the block lengths in bytes. */
 | |
|     opt_lenb = (s.opt_len + 3 + 7) >>> 3;
 | |
|     static_lenb = (s.static_len + 3 + 7) >>> 3;
 | |
| 
 | |
|     // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 | |
|     //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 | |
|     //        s->last_lit));
 | |
| 
 | |
|     if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
 | |
| 
 | |
|   } else {
 | |
|     // Assert(buf != (char*)0, "lost buf");
 | |
|     opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 | |
|   }
 | |
| 
 | |
|   if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
 | |
|     /* 4: two words for the lengths */
 | |
| 
 | |
|     /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 | |
|      * Otherwise we can't have processed more than WSIZE input bytes since
 | |
|      * the last block flush, because compression would have been
 | |
|      * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 | |
|      * transform a block into a stored block.
 | |
|      */
 | |
|     _tr_stored_block(s, buf, stored_len, last);
 | |
| 
 | |
|   } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
 | |
| 
 | |
|     send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
 | |
|     compress_block(s, static_ltree, static_dtree);
 | |
| 
 | |
|   } else {
 | |
|     send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
 | |
|     send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
 | |
|     compress_block(s, s.dyn_ltree, s.dyn_dtree);
 | |
|   }
 | |
|   // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 | |
|   /* The above check is made mod 2^32, for files larger than 512 MB
 | |
|    * and uLong implemented on 32 bits.
 | |
|    */
 | |
|   init_block(s);
 | |
| 
 | |
|   if (last) {
 | |
|     bi_windup(s);
 | |
|   }
 | |
|   // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 | |
|   //       s->compressed_len-7*last));
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Save the match info and tally the frequency counts. Return true if
 | |
|  * the current block must be flushed.
 | |
|  */
 | |
| function _tr_tally(s, dist, lc)
 | |
| //    deflate_state *s;
 | |
| //    unsigned dist;  /* distance of matched string */
 | |
| //    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 | |
| {
 | |
|   //var out_length, in_length, dcode;
 | |
| 
 | |
|   s.pending_buf[s.d_buf + s.last_lit * 2]     = (dist >>> 8) & 0xff;
 | |
|   s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
 | |
| 
 | |
|   s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
 | |
|   s.last_lit++;
 | |
| 
 | |
|   if (dist === 0) {
 | |
|     /* lc is the unmatched char */
 | |
|     s.dyn_ltree[lc * 2]/*.Freq*/++;
 | |
|   } else {
 | |
|     s.matches++;
 | |
|     /* Here, lc is the match length - MIN_MATCH */
 | |
|     dist--;             /* dist = match distance - 1 */
 | |
|     //Assert((ush)dist < (ush)MAX_DIST(s) &&
 | |
|     //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 | |
|     //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 | |
| 
 | |
|     s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
 | |
|     s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
 | |
|   }
 | |
| 
 | |
| // (!) This block is disabled in zlib defaults,
 | |
| // don't enable it for binary compatibility
 | |
| 
 | |
| //#ifdef TRUNCATE_BLOCK
 | |
| //  /* Try to guess if it is profitable to stop the current block here */
 | |
| //  if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
 | |
| //    /* Compute an upper bound for the compressed length */
 | |
| //    out_length = s.last_lit*8;
 | |
| //    in_length = s.strstart - s.block_start;
 | |
| //
 | |
| //    for (dcode = 0; dcode < D_CODES; dcode++) {
 | |
| //      out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
 | |
| //    }
 | |
| //    out_length >>>= 3;
 | |
| //    //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
 | |
| //    //       s->last_lit, in_length, out_length,
 | |
| //    //       100L - out_length*100L/in_length));
 | |
| //    if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
 | |
| //      return true;
 | |
| //    }
 | |
| //  }
 | |
| //#endif
 | |
| 
 | |
|   return (s.last_lit === s.lit_bufsize - 1);
 | |
|   /* We avoid equality with lit_bufsize because of wraparound at 64K
 | |
|    * on 16 bit machines and because stored blocks are restricted to
 | |
|    * 64K-1 bytes.
 | |
|    */
 | |
| }
 | |
| 
 | |
| exports._tr_init  = _tr_init;
 | |
| exports._tr_stored_block = _tr_stored_block;
 | |
| exports._tr_flush_block  = _tr_flush_block;
 | |
| exports._tr_tally = _tr_tally;
 | |
| exports._tr_align = _tr_align;
 | |
| 
 | |
| },{"../utils/common":3}],15:[function(require,module,exports){
 | |
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| function ZStream() {
 | |
|   /* next input byte */
 | |
|   this.input = null; // JS specific, because we have no pointers
 | |
|   this.next_in = 0;
 | |
|   /* number of bytes available at input */
 | |
|   this.avail_in = 0;
 | |
|   /* total number of input bytes read so far */
 | |
|   this.total_in = 0;
 | |
|   /* next output byte should be put there */
 | |
|   this.output = null; // JS specific, because we have no pointers
 | |
|   this.next_out = 0;
 | |
|   /* remaining free space at output */
 | |
|   this.avail_out = 0;
 | |
|   /* total number of bytes output so far */
 | |
|   this.total_out = 0;
 | |
|   /* last error message, NULL if no error */
 | |
|   this.msg = ''/*Z_NULL*/;
 | |
|   /* not visible by applications */
 | |
|   this.state = null;
 | |
|   /* best guess about the data type: binary or text */
 | |
|   this.data_type = 2/*Z_UNKNOWN*/;
 | |
|   /* adler32 value of the uncompressed data */
 | |
|   this.adler = 0;
 | |
| }
 | |
| 
 | |
| module.exports = ZStream;
 | |
| 
 | |
| },{}],"/":[function(require,module,exports){
 | |
| // Top level file is just a mixin of submodules & constants
 | |
| 'use strict';
 | |
| 
 | |
| var assign    = require('./lib/utils/common').assign;
 | |
| 
 | |
| var deflate   = require('./lib/deflate');
 | |
| var inflate   = require('./lib/inflate');
 | |
| var constants = require('./lib/zlib/constants');
 | |
| 
 | |
| var pako = {};
 | |
| 
 | |
| assign(pako, deflate, inflate, constants);
 | |
| 
 | |
| module.exports = pako;
 | |
| 
 | |
| },{"./lib/deflate":1,"./lib/inflate":2,"./lib/utils/common":3,"./lib/zlib/constants":6}]},{},[])("/")
 | |
| });
 |